Распределение случайной величины имеет вид. Математика и информатика

Случайная величина Х имеет нормальное распределение (или распределение по закону Гаусса), если ее плотность вероятности имеет вид:
,
где параметры а – любое действительное число и σ >0.
График дифференциальной функции нормального распределения называют нормальной кривой (кривой Гаусса). Нормальная кривая (рис. 2.12) симметрична относительно прямой х =а , имеет максимальную ординату , а в точках х = а ± σ – перегиб.

Рис. 2.12
Доказано, что параметр а является математическим ожиданием (также модой и медианой), а σ – средним квадратическим отклонением. Коэффициенты асимметрии и эксцесса для нормального распределения равны нулю:As = Ex = 0.
Установим теперь, как влияет изменение параметров а и σ на вид нормальной кривой. При изменении параметра а форма нормальной кривой не изменяется. В этом случае, если математическое ожидание (параметр а ) уменьшилось или увеличилось, график нормальной кривой сдвигается влево или вправо (рис. 2.13).
При изменении параметра σ изменяется форма нормальной кривой. Если этот параметр увеличивается, то максимальное значение функции убывает, и наоборот. Так как площадь, ограниченная кривой распределения и осью Ох , должна быть постоянной и равной 1, то с увеличением параметра σ кривая приближается к оси Ох и растягивается вдоль нее, а с уменьшением σ кривая стягивается к прямой х = а (рис. 2.14).

Рис. 2.13 Рис. 2.14
Функция плотности нормального распределения φ(х ) с параметрами а = 0, σ = 1 называется плотностью стандартной нормальной случайной величины , а ее график – стандартной кривой Гаусса.
Функция плотности нормальной стандартной величины определяется формулой , а ее график изображен на рис. 2.15.
Из свойств математического ожидания и дисперсии следует, что для величины , D(U )=1, M (U ) = 0. Поэтому стандартную нор мальную кривую можно рассматривать как кривую распределения случайной величины , где Х – случайная величина, подчиненная нормальному закону распределения с параметрами а и σ.
Нормальный закон распределения случайной величины в интегральной форме имеет вид
(2.10)
Полагая в интеграле (3.10) , получим
,
где . Первое слагаемое равно 1/2 (половине площади криволинейной трапеции, изображенной на рис. 3.15). Второе слагаемое
(2.11)
называется функцией Лапласа , а также интегралом вероятности.
Поскольку интеграл в формуле (2.11) не выражается через элементарные функции, для удобства расчетов составлена для z ≥ 0 таблица функции Лапласа. Чтобы вычислить функцию Лапласа для отрицательных значений z , необходимо воспользоваться нечетностью функции Лапласа: Ф(–z ) = – Ф(z ). Окончательно получаем расчетную формулу

Отсюда получаем, что для случайной величины Х , подчиняющейся нормальному закону, вероятность ее попадания на отрезок [ α, β] есть
(2.12)
С помощью формулы (2.12) найдем вероятность того, что модуль отклонения нормального распределения величины Х от ее центра распределения а меньше 3σ. Имеем
Р(|x a | < 3 s) =P(а –3 s< X < а +3 s)= Ф(3) – Ф(–3) = 2Ф(3) »0,9973.
Значение Ф(3) получено по таблице функции Лапласа.
Принято считать событие практически достоверным , если его вероятность близка к единице, и практически невозможным, если его вероятность близка к нулю.
Мы получили так называемое правило трех сигм : для нормального распределения событие (|x a | < 3σ) практически достоверно.
Правило трех сигм можно сформулировать иначе: хотя нормальная случайная величина распределена на всей оси х , интервал ее практически возможных значений есть (a –3σ, a +3σ) .
Нормальное распределение имеет ряд свойств, делающих его одним из самых употребительных в статистике распределений.
Если предоставляется возможность рассматривать некоторую случайную величину как сумму достаточно большого числа других случайных величин, то данная случайная величина обычно подчиняется нормальному закону распределения. Суммируемые случайные величины могут подчиняться каким угодно распределениям, но при этом должно выполняться условие их независимости (или слабой независимости). Также ни одна из суммируемых случайных величин не должна резко отличаться от других, т.е. каждая из них должна играть в общей сумме примерно одинаковую роль и не иметь исключительно большую по сравнению с другими величинами дисперсию.
Этим и объясняется широкая распространенность нормального распределения. Оно возникает во всех явлениях, процессах, где рассеяния случайной изучаемой величины вызывается большим количеством случайных причин, влияние каждой из которых в отдельности на рассеяние ничтожно мало.
Большинство встречающихся на практике случайных величин (таких, например, как количества продаж некоторого товара, ошибка измерения; отклонение снарядов от цели по дальности или по направлению; отклонение действительных размеров деталей, обработанных на станке, от номинальных размеров и т.д.) может быть представлено как сумма большого числа независимых случайных величин, оказывающих равномерно малое влияние на рассеяние суммы. Такие случайные величины принято считать нормально распределенными. Гипотеза о нормальности подобных величин находит свое теоретическое обоснование в центральной предельной теореме и получила многочисленные практические подтверждения.
Представим себе, что некоторый товар реализуется в нескольких торговых точках. Из–за случайного влияния различных факторов количества продаж товара в каждой точке будут несколько различаться, но среднее всех значений будет приближаться к истинному среднему числу продаж.
Отклонения числа продаж в каждой торговой точке от среднего образуют симметричную кривую распределения, близкую к кривой нормального распределения. Любое систематическое влияние какого-либо фактора проявится в асимметрии распределения.
Задача . Случайная величина распределена нормально с параметрами а = 8, σ = 3.Найти вероятность того, что случайная величина в результате опыта примет значение, заключенной в интервале (12,5; 14).
Решение . Воспользуемся формулой (2.12). Имеем

Задача . Число проданного за неделю товара определенного вида Х можно считать распределенной нормально. Математическое ожидание числа продаж тыс. шт. Среднее квадратическое отклонение этой случайной величины σ = 0,8 тыс. шт. Найти вероятность того, что за неделю будет продано от 15 до 17 тыс. шт. товара.
Решение. Случайная величина Х распределена нормально с параметрами а = М(Х ) = 15,7; σ = 0,8. Требуется вычислить вероятность неравенства 15 ≤ X ≤ 17. По формуле (2.12) получаем

1.2.4. Случайные величины и их распределения

Распределения случайных величин и функции распределения . Распределение числовой случайной величины – это функция, которая однозначно определяет вероятность того, что случайная величина принимает заданное значение или принадлежит к некоторому заданному интервалу.

Первое – если случайная величина принимает конечное число значений. Тогда распределение задается функцией Р(Х = х), ставящей каждому возможному значению х случайной величины Х вероятность того, что Х = х .

Второе – если случайная величина принимает бесконечно много значений. Это возможно лишь тогда, когда вероятностное пространство, на котором определена случайная величина, состоит из бесконечного числа элементарных событий. Тогда распределение задается набором вероятностей P(a < X для всех пар чисел a, b таких, что a. Распределение может быть задано с помощью т.н. функции распределения F(x) = P(Xопределяющей для всех действительных х вероятность того, что случайная величина Х принимает значения, меньшие х . Ясно, что

P(a < X

Это соотношение показывает, что как распределение может быть рассчитано по функции распределения, так и, наоборот, функция распределения – по распределению.

Используемые в вероятностно-статистических методах принятия решений и других прикладных исследованиях функции распределения бывают либо дискретными, либо непрерывными, либо их комбинациями.

Дискретные функции распределения соответствуют дискретным случайным величинам, принимающим конечное число значений или же значения из множества, элементы которого можно перенумеровать натуральными числами (такие множества в математике называют счетными). Их график имеет вид ступенчатой лестницы (рис. 1).

Пример 1. Число Х дефектных изделий в партии принимает значение 0 с вероятностью 0,3, значение 1 с вероятностью 0,4, значение 2 с вероятностью 0,2 и значение 3 с вероятностью 0,1. График функции распределения случайной величины Х изображен на рис.1.

Рис.1. График функции распределения числа дефектных изделий.

Непрерывные функции распределения не имеют скачков. Они монотонно возрастают при увеличении аргумента – от 0 при до 1 при . Случайные величины, имеющие непрерывные функции распределения, называют непрерывными.

Непрерывные функции распределения, используемые в вероятностно-статистических методах принятия решений, имеют производные. Первая производная f(x) функции распределения F(x) называется плотностью вероятности,

По плотности вероятности можно определить функцию распределения:

Для любой функции распределения

Перечисленные свойства функций распределения постоянно используются в вероятностно-статистических методах принятия решений. В частности, из последнего равенства вытекает конкретный вид констант в формулах для плотностей вероятностей, рассматриваемых ниже.

Пример 2. Часто используется следующая функция распределения:

(1)

где a и b – некоторые числа, a. Найдем плотность вероятности этой функции распределения:

(в точках x = a и x = b производная функции F(x) не существует).

Случайная величина с функцией распределения (1) называется «равномерно распределенной на отрезке [a; b ]».

Смешанные функции распределения встречаются, в частности, тогда, когда наблюдения в какой-то момент прекращаются. Например, при анализе статистических данных, полученных при использовании планов испытаний на надежность, предусматривающих прекращение испытаний по истечении некоторого срока. Или при анализе данных о технических изделиях, потребовавших гарантийного ремонта.

Пример 3. Пусть, например, срок службы электрической лампочки – случайная величина с функцией распределения F(t), а испытание проводится до выхода лампочки из строя, если это произойдет менее чем за 100 часов от начала испытаний, или до момента t 0 = 100 часов. Пусть G(t) – функция распределения времени эксплуатации лампочки в исправном состоянии при этом испытании. Тогда

Функция G(t) имеет скачок в точке t 0 , поскольку соответствующая случайная величина принимает значение t 0 с вероятностью 1-F(t 0)> 0.

Характеристики случайных величин. В вероятностно-статистических методах принятия решений используется ряд характеристик случайных величин, выражающихся через функции распределения и плотности вероятностей.

При описании дифференциации доходов, при нахождении доверительных границ для параметров распределений случайных величин и во многих иных случаях используется такое понятие, как «квантиль порядка р », где 0 < p < 1 (обозначается х р ). Квантиль порядка р – значение случайной величины, для которого функция распределения принимает значение р или имеет место «скачок» со значения меньше р до значения больше р (рис.2). Может случиться, что это условие выполняется для всех значений х, принадлежащих этому интервалу (т.е. функция распределения постоянна на этом интервале и равна р ). Тогда каждое такое значение называется «квантилем порядка р ». Для непрерывных функций распределения, как правило, существует единственный квантиль х р порядка р (рис.2), причем

F(x p) = p . (2)

Рис.2. Определение квантиля х р порядка р .

Пример 4. Найдем квантиль х р порядка р для функции распределения F(x) из (1).

При 0 < p < 1 квантиль х р находится из уравнения

т.е. х р = a + p(b – a) = a( 1- p) +bp . При p = 0 любое x < a является квантилем порядка p = 0. Квантилем порядка p = 1 является любое число x > b .

Для дискретных распределений, как правило, не существует х р , удовлетворяющих уравнению (2). Точнее, если распределение случайной величины дается табл.1, где x 1 < x 2 < … < x k , то равенство (2), рассматриваемое как уравнение относительно х р , имеет решения только для k значений p , а именно,

p = p 1 ,

p = p 1 + p 2 ,

p = p 1 + p 2 + p 3 ,

p = p 1 + p 2 + … + p m , 3 < m < k ,

p = p 1 + p 2 + … + p k .

Таблица 1.

Распределение дискретной случайной величины

Для перечисленных k значений вероятности p решение х р уравнения (2) неединственно, а именно,

F(x) = p 1 + p 2 + … + p m

для всех х таких, что x m < x < x m+1 . Т.е. х р – любое число из интервала (x m ; x m+1 ]. Для всех остальных р из промежутка (0;1), не входящих в перечень (3), имеет место «скачок» со значения меньше р до значения больше р . А именно, если

p 1 + p 2 + … + p m

то х р = x m+1 .

Рассмотренное свойство дискретных распределений создает значительные трудности при табулировании и использовании подобных распределений, поскольку невозможным оказывается точно выдержать типовые численные значения характеристик распределения. В частности, это так для критических значений и уровней значимости непараметрических статистических критериев (см. ниже), поскольку распределения статистик этих критериев дискретны.

Большое значение в статистике имеет квантиль порядка р = ½. Он называется медианой (случайной величины Х или ее функции распределения F(x)) и обозначается Me(X). В геометрии есть понятие «медиана» - прямая, проходящая через вершину треугольника и делящая противоположную его сторону пополам. В математической статистике медиана делит пополам не сторону треугольника, а распределение случайной величины: равенство F(x 0,5) = 0,5 означает, что вероятность попасть левее x 0,5 и вероятность попасть правее x 0,5 (или непосредственно в x 0,5 ) равны между собой и равны ½, т.е.

P (X < x 0,5) = P (X > x 0,5) = ½.

Медиана указывает «центр» распределения. С точки зрения одной из современных концепций – теории устойчивых статистических процедур – медиана является более хорошей характеристикой случайной величины, чем математическое ожидание . При обработке результатов измерений в порядковой шкале (см. главу о теории измерений) медианой можно пользоваться, а математическим ожиданием – нет.

Ясный смысл имеет такая характеристика случайной величины, как мода – значение (или значения) случайной величины, соответствующее локальному максимуму плотности вероятности для непрерывной случайной величины или локальному максимуму вероятности для дискретной случайной величины.

Если x 0 – мода случайной величины с плотностью f(x), то, как известно из дифференциального исчисления, .

У случайной величины может быть много мод. Так, для равномерного распределения (1) каждая точка х такая, что a < x < b , является модой. Однако это исключение. Большинство случайных величин, используемых в вероятностно-статистических методах принятия решений и других прикладных исследованиях, имеют одну моду. Случайные величины, плотности, распределения, имеющие одну моду, называются унимодальными.

Математическое ожидание для дискретных случайных величин с конечным числом значений рассмотрено в главе «События и вероятности». Для непрерывной случайной величины Х математическое ожидание М(Х) удовлетворяет равенству

являющемуся аналогом формулы (5) из утверждения 2 главы «События и вероятности».

Пример 5. Математическое ожидание для равномерно распределенной случайной величины Х равно

Для рассматриваемых в настоящей главе случайных величин верны все те свойства математических ожиданий и дисперсий, которые были рассмотрены ранее для дискретных случайных величин с конечным числом значений. Однако доказательства этих свойств не приводим, поскольку они требуют углубления в математические тонкости, не являющегося необходимым для понимания и квалифицированного применения вероятностно-статистических методов принятия решений.

Замечание. В настоящем учебнике сознательно обходятся математические тонкости, связанные, в частности, с понятиями измеримых множеств и измеримых функций, -алгебры событий и т.п. Желающим освоить эти понятия необходимо обратиться к специальной литературе, в частности, к энциклопедии .

Каждая из трех характеристик – математическое ожидание, медиана, мода – описывает «центр» распределения вероятностей. Понятие «центр» можно определять разными способами – отсюда три разные характеристики. Однако для важного класса распределений – симметричных унимодальных – все три характеристики совпадают.

Плотность распределения f(x) – плотность симметричного распределения, если найдется число х 0 такое, что

. (3)

Равенство (3) означает, что график функции y = f(x) симметричен относительно вертикальной прямой, проходящей через центр симметрии х = х 0 . Из (3) следует, что функция симметричного распределения удовлетворяет соотношению

(4)

Для симметричного распределения с одной модой математическое ожидание, медиана и мода совпадают и равны х 0 .

Наиболее важен случай симметрии относительно 0, т.е. х 0 = 0. Тогда (3) и (4) переходят в равенства

(6)

соответственно. Приведенные соотношения показывают, что симметричные распределения нет необходимости табулировать при всех х , достаточно иметь таблицы при x > x 0 .

Отметим еще одно свойство симметричных распределений, постоянно используемое в вероятностно-статистических методах принятия решений и других прикладных исследованиях. Для непрерывной функции распределения

P(|X|< a) = P(-a < X < a) = F(a) – F(-a),

где F – функция распределения случайной величины Х . Если функция распределения F симметрична относительно 0, т.е. для нее справедлива формула (6), то

P(|X|< a) = 2F(a) – 1.

Часто используют другую формулировку рассматриваемого утверждения: если

.

Если и - квантили порядка и соответственно (см. (2)) функции распределения, симметричной относительно 0, то из (6) следует, что

От характеристик положения – математического ожидания, медианы, моды – перейдем к характеристикам разброса случайной величины Х : дисперсии , среднему квадратическому отклонению и коэффициенту вариации v . Определение и свойства дисперсии для дискретных случайных величин рассмотрены в предыдущей главе. Для непрерывных случайных величин

Среднее квадратическое отклонение – это неотрицательное значение квадратного корня из дисперсии:

Коэффициент вариации – это отношение среднего квадратического отклонения к математическому ожиданию:

Коэффициент вариации применяется при M(X)> 0. Он измеряет разброс в относительных единицах, в то время как среднее квадратическое отклонение – в абсолютных.

Пример 6. Для равномерно распределенной случайной величины Х найдем дисперсию, среднеквадратическое отклонение и коэффициент вариации. Дисперсия равна:

Замена переменной дает возможность записать:

где c = (b a )/ 2. Следовательно, среднее квадратическое отклонение равно а коэффициент вариации таков:

По каждой случайной величине Х определяют еще три величины – центрированную Y , нормированную V и приведенную U . Центрированная случайная величина Y – это разность между данной случайной величиной Х и ее математическим ожиданием М(Х), т.е. Y = Х – М(Х). Математическое ожидание центрированной случайной величины Y равно 0, а дисперсия – дисперсии данной случайной величины: М(Y ) = 0, D (Y ) = D (X ). Функция распределения F Y (x ) центрированной случайной величины Y связана с функцией распределения F (x ) исходной случайной величины X соотношением:

F Y (x ) = F (x + M (X )).

Для плотностей этих случайных величин справедливо равенство

f Y (x ) = f (x + M (X )).

Нормированная случайная величина V – это отношение данной случайной величины Х к ее среднему квадратическому отклонению , т.е. . Математическое ожидание и дисперсия нормированной случайной величины V выражаются через характеристики Х так:

,

где v – коэффициент вариации исходной случайной величины Х . Для функции распределения F V (x ) и плотности f V (x ) нормированной случайной величины V имеем:

где F (x ) – функция распределения исходной случайной величины Х , а f (x ) – ее плотность вероятности.

Приведенная случайная величина U – это центрированная и нормированная случайная величина:

.

Для приведенной случайной величины

Нормированные, центрированные и приведенные случайные величины постоянно используются как в теоретических исследованиях, так и в алгоритмах, программных продуктах, нормативно-технической и инструктивно-методической документации. В частности, потому, что равенства позволяют упростить обоснования методов, формулировки теорем и расчетные формулы.

Используются преобразования случайных величин и более общего плана. Так, если Y = aX + b , где a и b – некоторые числа, то

Пример 7. Если то Y – приведенная случайная величина, и формулы (8) переходят в формулы (7).

С каждой случайной величиной Х можно связать множество случайных величин Y , заданных формулой Y = aX + b при различных a > 0 и b . Это множество называют масштабно-сдвиговым семейством , порожденным случайной величиной Х . Функции распределения F Y (x ) составляют масштабно сдвиговое семейство распределений, порожденное функцией распределения F (x ). Вместо Y = aX + b часто используют запись

Число с называют параметром сдвига, а число d - параметром масштаба. Формула (9) показывает, что Х – результат измерения некоторой величины – переходит в У – результат измерения той же величины, если начало измерения перенести в точку с , а затем использовать новую единицу измерения, в d раз большую старой.

Для масштабно-сдвигового семейства (9) распределение Х называют стандартным. В вероятностно-статистических методах принятия решений и других прикладных исследованиях используют стандартное нормальное распределение, стандартное распределение Вейбулла-Гнеденко, стандартное гамма-распределение и др. (см. ниже).

Применяют и другие преобразования случайных величин. Например, для положительной случайной величины Х рассматривают Y = lg X , где lg X – десятичный логарифм числа Х . Цепочка равенств

F Y (x) = P( lg X < x) = P(X < 10 x) = F( 10 x)

связывает функции распределения Х и Y .

При обработке данных используют такие характеристики случайной величины Х как моменты порядка q , т.е. математические ожидания случайной величины X q , q = 1, 2, … Так, само математическое ожидание – это момент порядка 1. Для дискретной случайной величины момент порядка q может быть рассчитан как

Для непрерывной случайной величины

Моменты порядка q называют также начальными моментами порядка q , в отличие от родственных характеристик – центральных моментов порядка q , задаваемых формулой

Так, дисперсия – это центральный момент порядка 2.

Нормальное распределение и центральная предельная теорема. В вероятностно-статистических методах принятия решений часто идет речь о нормальном распределении. Иногда его пытаются использовать для моделирования распределения исходных данных (эти попытки не всегда являются обоснованными – см. ниже). Более существенно, что многие методы обработки данных основаны на том, что расчетные величины имеют распределения, близкие к нормальному.

Пусть X 1 , X 2 ,…, X n M (X i ) = m и дисперсиями D (X i ) = , i = 1, 2,…, n ,… Как следует из результатов предыдущей главы,

Рассмотрим приведенную случайную величину U n для суммы , а именно,

Как следует из формул (7), M (U n ) = 0, D (U n ) = 1.

(для одинаково распределенных слагаемых). Пусть X 1 , X 2 ,…, X n , …– независимые одинаково распределенные случайные величины с математическими ожиданиями M (X i ) = m и дисперсиями D (X i ) = , i = 1, 2,…, n ,… Тогда для любого х существует предел

где Ф(х) – функция стандартного нормального распределения.

Подробнее о функции Ф(х) – ниже (читается «фи от икс», поскольку Ф – греческая прописная буква «фи»).

Центральная предельная теорема (ЦПТ) носит свое название по той причине, что она является центральным, наиболее часто применяющимся математическим результатом теории вероятностей и математической статистики. История ЦПТ занимает около 200 лет – с 1730 г., когда английский математик А.Муавр (1667-1754) опубликовал первый результат, относящийся к ЦПТ (см. ниже о теореме Муавра-Лапласа), до двадцатых – тридцатых годов ХХ в., когда финн Дж.У. Линдеберг, француз Поль Леви (1886-1971), югослав В. Феллер (1906-1970), русский А.Я. Хинчин (1894-1959) и другие ученые получили необходимые и достаточные условия справедливости классической центральной предельной теоремы.

Развитие рассматриваемой тематики на этом отнюдь не прекратилось – изучали случайные величины, не имеющие дисперсии, т.е. те, для которых

(академик Б.В.Гнеденко и др.), ситуацию, когда суммируются случайные величины (точнее, случайные элементы) более сложной природы, чем числа (академики Ю.В.Прохоров, А.А.Боровков и их соратники), и т.д.

Функция распределения Ф(х) задается равенством

,

где - плотность стандартного нормального распределения, имеющая довольно сложное выражение:

.

Здесь =3,1415925… - известное в геометрии число, равное отношению длины окружности к диаметру, e = 2,718281828… - основание натуральных логарифмов (для запоминания этого числа обратите внимание, что 1828 – год рождения писателя Л.Н.Толстого). Как известно из математического анализа,

При обработке результатов наблюдений функцию нормального распределения не вычисляют по приведенным формулам, а находят с помощью специальных таблиц или компьютерных программ. Лучшие на русском языке «Таблицы математической статистики» составлены членами-корреспондентами АН СССР Л.Н. Большевым и Н.В.Смирновым .

Вид плотности стандартного нормального распределения вытекает из математической теории, которую не имеем возможности здесь рассматривать, равно как и доказательство ЦПТ.

Для иллюстрации приводим небольшие таблицы функции распределения Ф(х) (табл.2) и ее квантилей (табл.3). Функция Ф(х) симметрична относительно 0, что отражается в табл.2-3.

Таблица 2.

Функция стандартного нормального распределения.

Если случайная величина Х имеет функцию распределения Ф(х), то М(Х) = 0, D (X ) = 1. Это утверждение доказывается в теории вероятностей, исходя из вида плотности вероятностей . Оно согласуется с аналогичным утверждением для характеристик приведенной случайной величины U n , что вполне естественно, поскольку ЦПТ утверждает, что при безграничном возрастании числа слагаемых функция распределения U n стремится к функции стандартного нормального распределения Ф(х), причем при любом х .

Таблица 3.

Квантили стандартного нормального распределения.

Квантиль порядка р

Квантиль порядка р

Введем понятие семейства нормальных распределений. По определению нормальным распределением называется распределение случайной величины Х , для которой распределение приведенной случайной величины есть Ф(х). Как следует из общих свойств масштабно-сдвиговых семейств распределений (см. выше), нормальное распределение – это распределение случайной величины

где Х – случайная величина с распределением Ф(Х), причем m = M (Y ), = D (Y ). Нормальное распределение с параметрами сдвига m и масштаба обычно обозначается N (m , ) (иногда используется обозначение N (m , ) ).

Как следует из (8), плотность вероятности нормального распределения N (m , ) есть

Нормальные распределения образуют масштабно-сдвиговое семейство. При этом параметром масштаба является d = 1/ , а параметром сдвига c = - m / .

Для центральных моментов третьего и четвертого порядка нормального распределения справедливы равенства

Эти равенства лежат в основе классических методов проверки того, что результаты наблюдений подчиняются нормальному распределению. В настоящее время нормальность обычно рекомендуется проверять по критерию W Шапиро – Уилка. Проблема проверки нормальности обсуждается ниже.

Если случайные величины Х 1 и Х 2 имеют функции распределения N (m 1 , 1) и N (m 2 , 2) соответственно, то Х 1 + Х 2 имеет распределение Следовательно, если случайные величины X 1 , X 2 ,…, X n N (m , ) , то их среднее арифметическое

имеет распределение N (m , ) . Эти свойства нормального распределения постоянно используются в различных вероятностно-статистических методах принятия решений, в частности, при статистическом регулировании технологических процессов и в статистическом приемочном контроле по количественному признаку.

С помощью нормального распределения определяются три распределения, которые в настоящее время часто используются при статистической обработке данных.

Распределение (хи - квадрат) – распределение случайной величины

где случайные величины X 1 , X 2 ,…, X n независимы и имеют одно и тоже распределение N (0,1). При этом число слагаемых, т.е. n , называется «числом степеней свободы» распределения хи – квадрат.

Распределение t Стьюдента – это распределение случайной величины

где случайные величины U и X независимы, U имеет распределение стандартное нормальное распределение N (0,1), а X – распределение хи – квадрат с n степенями свободы. При этом n называется «числом степеней свободы» распределения Стьюдента. Это распределение было введено в 1908 г. английским статистиком В. Госсетом, работавшем на фабрике, выпускающей пиво. Вероятностно-статистические методы использовались для принятия экономических и технических решений на этой фабрике, поэтому ее руководство запрещало В. Госсету публиковать научные статьи под своим именем. Таким способом охранялась коммерческая тайна, «ноу-хау» в виде вероятностно-статистических методов, разработанных В. Госсетом. Однако он имел возможность публиковаться под псевдонимом «Стьюдент». История Госсета - Стьюдента показывает, что еще сто лет менеджерам Великобритании была очевидна большая экономическая эффективность вероятностно-статистических методов принятия решений.

Распределение Фишера – это распределение случайной величины

где случайные величины Х 1 и Х 2 независимы и имеют распределения хи – квадрат с числом степеней свободы k 1 и k 2 соответственно. При этом пара (k 1 , k 2 ) – пара «чисел степеней свободы» распределения Фишера, а именно, k 1 – число степеней свободы числителя, а k 2 – число степеней свободы знаменателя. Распределение случайной величины F названо в честь великого английского статистика Р.Фишера (1890-1962), активно использовавшего его в своих работах.

Выражения для функций распределения хи - квадрат, Стьюдента и Фишера, их плотностей и характеристик, а также таблицы можно найти в специальной литературе (см., например, ).

Как уже отмечалось, нормальные распределения в настоящее время часто используют в вероятностных моделях в различных прикладных областях. В чем причина такой широкой распространенности этого двухпараметрического семейства распределений? Она проясняется следующей теоремой.

Центральная предельная теорема (для разнораспределенных слагаемых). Пусть X 1 , X 2 ,…, X n ,… - независимые случайные величины с математическими ожиданиями М(X 1 ), М(X 2 ),…, М(X n), … и дисперсиями D (X 1 ), D (X 2 ),…, D (X n), … соответственно. Пусть

Тогда при справедливости некоторых условий, обеспечивающих малость вклада любого из слагаемых в U n ,

для любого х .

Условия, о которых идет речь, не будем здесь формулировать. Их можно найти в специальной литературе (см., например, ). «Выяснение условий, при которых действует ЦПТ, составляет заслугу выдающихся русских ученых А.А.Маркова (1857-1922) и, в особенности, А.М.Ляпунова (1857-1918)» .

Центральная предельная теорема показывает, что в случае, когда результат измерения (наблюдения) складывается под действием многих причин, причем каждая из них вносит лишь малый вклад, а совокупный итог определяется аддитивно , т.е. путем сложения, то распределение результата измерения (наблюдения) близко к нормальному.

Иногда считают, что для нормальности распределения достаточно того, что результат измерения (наблюдения) Х формируется под действием многих причин, каждая из которых оказывает малое воздействие. Это не так. Важно, как эти причины действуют. Если аддитивно – то Х имеет приближенно нормальное распределение. Если мультипликативно (т.е. действия отдельных причин перемножаются, а не складываются), то распределение Х близко не к нормальному, а к т.н. логарифмически нормальному, т.е. не Х , а lg X имеет приблизительно нормальное распределение. Если же нет оснований считать, что действует один из этих двух механизмов формирования итогового результата (или какой-либо иной вполне определенный механизм), то про распределение Х ничего определенного сказать нельзя.

Из сказанного вытекает, что в конкретной прикладной задаче нормальность результатов измерений (наблюдений), как правило, нельзя установить из общих соображений, ее следует проверять с помощью статистических критериев. Или же использовать непараметрические статистические методы, не опирающиеся на предположения о принадлежности функций распределения результатов измерений (наблюдений) к тому или иному параметрическому семейству.

Непрерывные распределения, используемые в вероятностно-статистических методах принятия решений. Кроме масштабно-сдвигового семейства нормальных распределений, широко используют ряд других семейств распределения – логарифмически нормальных, экспоненциальных, Вейбулла-Гнеденко, гамма-распределений. Рассмотрим эти семейства.

Случайная величина Х имеет логарифмически нормальное распределение, если случайная величина Y = lg X имеет нормальное распределение. Тогда Z = ln X = 2,3026…Y также имеет нормальное распределение N (a 1 ,σ 1) , где ln X - натуральный логарифм Х . Плотность логарифмически нормального распределения такова:

Из центральной предельной теоремы следует, что произведение X = X 1 X 2 X n независимых положительных случайных величин X i , i = 1, 2,…, n , при больших n можно аппроксимировать логарифмически нормальным распределением. В частности, мультипликативная модель формирования заработной платы или дохода приводит к рекомендации приближать распределения заработной платы и дохода логарифмически нормальными законами. Для России эта рекомендация оказалась обоснованной - статистические данные подтверждают ее.

Имеются и другие вероятностные модели, приводящие к логарифмически нормальному закону. Классический пример такой модели дан А.Н.Колмогоровым , который из физически обоснованной системы постулатов вывел заключение о том, что размеры частиц при дроблении кусков руды, угля и т.п. на шаровых мельницах имеют логарифмически нормальное распределение.

Перейдем к другому семейству распределений, широко используемому в различных вероятностно-статистических методах принятия решений и других прикладных исследованиях, - семейству экспоненциальных распределений. Начнем с вероятностной модели, приводящей к таким распределениям. Для этого рассмотрим "поток событий", т.е. последовательность событий, происходящих одно за другим в какие-то моменты времени. Примерами могут служить: поток вызовов на телефонной станции; поток отказов оборудования в технологической цепочке; поток отказов изделий при испытаниях продукции; поток обращений клиентов в отделение банка; поток покупателей, обращающихся за товарами и услугами, и т.д. В теории потоков событий справедлива теорема, аналогичная центральной предельной теореме, но в ней речь идет не о суммировании случайных величин, а о суммировании потоков событий. Рассматривается суммарный поток, составленный из большого числа независимых потоков, ни один из которых не оказывает преобладающего влияния на суммарный поток. Например, поток вызовов, поступающих на телефонную станцию, слагается из большого числа независимых потоков вызовов, исходящих от отдельных абонентов. Доказано , что в случае, когда характеристики потоков не зависят от времени, суммарный поток полностью описывается одним числом - интенсивностью потока. Для суммарного потока рассмотрим случайную величину Х - длину промежутка времени между последовательными событиями. Ее функция распределения имеет вид

(10)

Это распределение называется экспоненциальным распределением, т.к. в формуле (10) участвует экспоненциальная функция e x . Величина 1/λ - масштабный параметр. Иногда вводят и параметр сдвига с , экспоненциальным называют распределение случайной величины Х + с , где распределение Х задается формулой (10).

Экспоненциальные распределения - частный случай т. н. распределений Вейбулла - Гнеденко. Они названы по фамилиям инженера В. Вейбулла, введшего эти распределения в практику анализа результатов усталостных испытаний, и математика Б.В.Гнеденко (1912-1995), получившего такие распределения в качестве предельных при изучении максимального из результатов испытаний. Пусть Х - случайная величина, характеризующая длительность функционирования изделия, сложной системы, элемента (т.е. ресурс, наработку до предельного состояния и т.п.), длительность функционирования предприятия или жизни живого существа и т.д. Важную роль играет интенсивность отказа

(11)

где F (x ) и f (x ) - функция распределения и плотность случайной величины Х .

Опишем типичное поведение интенсивности отказа. Весь интервал времени можно разбить на три периода. На первом из них функция λ(х) имеет высокие значения и явную тенденцию к убыванию (чаще всего она монотонно убывает). Это можно объяснить наличием в рассматриваемой партии единиц продукции с явными и скрытыми дефектами, которые приводят к относительно быстрому выходу из строя этих единиц продукции. Первый период называют "периодом приработки" (или "обкатки"). Именно на него обычно распространяется гарантийный срок.

Затем наступает период нормальной эксплуатации, характеризующийся приблизительно постоянной и сравнительно низкой интенсивностью отказов. Природа отказов в этот период носит внезапный характер (аварии, ошибки эксплуатационных работников и т.п.) и не зависит от длительности эксплуатации единицы продукции.

Наконец, последний период эксплуатации - период старения и износа. Природа отказов в этот период - в необратимых физико-механических и химических изменениях материалов, приводящих к прогрессирующему ухудшению качества единицы продукции и окончательному выходу ее из строя.

Каждому периоду соответствует свой вид функции λ(х) . Рассмотрим класс степенных зависимостей

λ(х) = λ 0 bx b -1 , (12)

где λ 0 > 0 и b > 0 - некоторые числовые параметры. Значения b < 1, b = 0 и b > 1 отвечают виду интенсивности отказов в периоды приработки, нормальной эксплуатации и старения соответственно.

Соотношение (11) при заданной интенсивности отказа λ(х) - дифференциальное уравнение относительно функции F (x ). Из теории дифференциальных уравнений следует, что

(13)

Подставив (12) в (13), получим, что

(14)

Распределение, задаваемое формулой (14) называется распределением Вейбулла - Гнеденко. Поскольку

то из формулы (14) следует, что величина а , задаваемая формулой (15), является масштабным параметром. Иногда вводят и параметр сдвига, т.е. функциями распределения Вейбулла - Гнеденко называют F (x - c ), где F (x ) задается формулой (14) при некоторых λ 0 и b .

Плотность распределения Вейбулла - Гнеденко имеет вид

(16)

где a > 0 - параметр масштаба, b > 0 - параметр формы, с - параметр сдвига. При этом параметр а из формулы (16) связан с параметром λ 0 из формулы (14) соотношением, указанным в формуле (15).

Экспоненциальное распределение - весьма частный случай распределения Вейбулла - Гнеденко, соответствующий значению параметра формы b = 1.

Распределение Вейбулла - Гнеденко применяется также при построении вероятностных моделей ситуаций, в которых поведение объекта определяется "наиболее слабым звеном". Подразумевается аналогия с цепью, сохранность которой определяется тем ее звеном, которое имеет наименьшую прочность. Другими словами, пусть X 1 , X 2 ,…, X n - независимые одинаково распределенные случайные величины,

X(1) = min (X 1 , X 2 ,…, X n ), X(n) = max (X 1 , X 2 ,…, X n ).

В ряде прикладных задач большую роль играют X (1) и X (n ) , в частности, при исследовании максимально возможных значений ("рекордов") тех или иных значений, например, страховых выплат или потерь из-за коммерческих рисков, при изучении пределов упругости и выносливости стали, ряда характеристик надежности и т.п. Показано, что при больших n распределения X (1) и X (n ) , как правило, хорошо описываются распределениями Вейбулла - Гнеденко. Основополагающий вклад в изучение распределений X (1) и X (n ) внес советский математик Б.В.Гнеденко. Использованию полученных результатов в экономике, менеджменте, технике и других областях посвящены труды В. Вейбулла, Э. Гумбеля, В.Б. Невзорова, Э.М. Кудлаева и многих иных специалистов.

Перейдем к семейству гамма-распределений. Они широко применяются в экономике и менеджменте, теории и практике надежности и испытаний, в различных областях техники, метеорологии и т.д. В частности, гамма-распределению подчинены во многих ситуациях такие величины, как общий срок службы изделия, длина цепочки токопроводящих пылинок, время достижения изделием предельного состояния при коррозии, время наработки до k -го отказа, k = 1, 2, …, и т.д. Продолжительность жизни больных хроническими заболеваниями, время достижения определенного эффекта при лечении в ряде случаев имеют гамма-распределение. Это распределение наиболее адекватно для описания спроса в экономико-математических моделях управления запасами (логистики).

Плотность гамма-распределения имеет вид

(17)

Плотность вероятности в формуле (17) определяется тремя параметрами a , b , c , где a >0, b >0. При этом a является параметром формы, b - параметром масштаба и с - параметром сдвига. Множитель 1/Γ(а) является нормировочным, он введен, чтобы

Здесь Γ(а) - одна из используемых в математике специальных функций, так называемая "гамма-функция", по которой названо и распределение, задаваемое формулой (17),

При фиксированном а формула (17) задает масштабно-сдвиговое семейство распределений, порождаемое распределением с плотностью

(18)

Распределение вида (18) называется стандартным гамма-распределением. Оно получается из формулы (17) при b = 1 и с = 0.

Частным случаем гамма-распределений при а = 1 являются экспоненциальные распределения (с λ = 1/ b ). При натуральном а и с =0 гамма-распределения называются распределениями Эрланга. С работ датского ученого К.А.Эрланга (1878-1929), сотрудника Копенгагенской телефонной компании, изучавшего в 1908-1922 гг. функционирование телефонных сетей, началось развитие теории массового обслуживания. Эта теория занимается вероятностно-статистическим моделированием систем, в которых происходит обслуживание потока заявок, с целью принятия оптимальных решений. Распределения Эрланга используют в тех же прикладных областях, в которых применяют экспоненциальные распределения. Это основано на следующем математическом факте: сумма k независимых случайных величин, экспоненциально распределенных с одинаковыми параметрами λ и с , имеет гамма-распределение с параметром формы а = k , параметром масштаба b = 1/λ и параметром сдвига kc . При с = 0 получаем распределение Эрланга.

Если случайная величина X имеет гамма-распределение с параметром формы а таким, что d = 2 a - целое число, b = 1 и с = 0, то 2Х имеет распределение хи-квадрат с d степенями свободы.

Случайная величина X с гвмма-распределением имеет следующие характеристики:

Математическое ожидание М(Х) = ab + c ,

Дисперсию D (X ) = σ 2 = ab 2 ,

Коэффициент вариации

Асимметрию

Эксцесс

Нормальное распределение - предельный случай гамма-распределения. Точнее, пусть Z - случайная величина, имеющая стандартное гамма-распределение, заданное формулой (18). Тогда

для любого действительного числа х , где Ф(х) - функция стандартного нормального распределения N (0,1).

В прикладных исследованиях используются и другие параметрические семейства распределений, из которых наиболее известны система кривых Пирсона, ряды Эджворта и Шарлье. Здесь они не рассматриваются.

Дискретные распределения, используемые в вероятностно-статистических методах принятия решений. Наиболее часто используют три семейства дискретных распределений - биномиальных, гипергеометрических и Пуассона, а также некоторые другие семейства - геометрических, отрицательных биномиальных, мультиномиальных, отрицательных гипергеометрических и т.д.

Как уже говорилось, биномиальное распределение имеет место при независимых испытаниях, в каждом из которых с вероятностью р появляется событие А . Если общее число испытаний n задано, то число испытаний Y , в которых появилось событие А , имеет биномиальное распределение. Для биномиального распределения вероятность принятия случайной величиной Y значения y определяется формулой

Число сочетаний из n элементов по y , известное из комбинаторики. Для всех y , кроме 0, 1, 2, …, n , имеем P (Y = y )= 0. Биномиальное распределение при фиксированном объеме выборки n задается параметром p , т.е. биномиальные распределения образуют однопараметрическое семейство. Они применяются при анализе данных выборочных исследований , в частности, при изучении предпочтений потребителей, выборочном контроле качества продукции по планам одноступенчатого контроля, при испытаниях совокупностей индивидуумов в демографии, социологии, медицине, биологии и др.

Если Y 1 и Y 2 - независимые биномиальные случайные величины с одним и тем же параметром p 0 , определенные по выборкам с объемами n 1 и n 2 соответственно, то Y 1 + Y 2 - биномиальная случайная величина, имеющая распределение (19) с р = p 0 и n = n 1 + n 2 . Это замечание расширяет область применимости биномиального распределения, позволяя объединять результаты нескольких групп испытаний, когда есть основания полагать, что всем этим группам соответствует один и тот же параметр.

Характеристики биномиального распределения вычислены ранее:

M (Y ) = np , D (Y ) = np ( 1- p ).

В разделе "События и вероятности" для биномиальной случайной величины доказан закон больших чисел:

для любого . С помощью центральной предельной теоремы закон больших чисел можно уточнить, указав, насколько Y / n отличается от р .

Теорема Муавра-Лапласа. Для любых чисел a и b , a < b , имеем

где Ф (х ) – функция стандартного нормального распределения с математическим ожиданием 0 и дисперсией 1.

Для доказательства достаточно воспользоваться представлением Y в виде суммы независимых случайных величин, соответствующих исходам отдельных испытаний, формулами для M (Y ) и D (Y ) и центральной предельной теоремой.

Эта теорема для случая р = ½ доказана английским математиком А.Муавром (1667-1754) в 1730 г. В приведенной выше формулировке она была доказана в 1810 г. французским математиком Пьером Симоном Лапласом (1749 – 1827).

Гипергеометрическое распределение имеет место при выборочном контроле конечной совокупности объектов объема N по альтернативному признаку. Каждый контролируемый объект классифицируется либо как обладающий признаком А , либо как не обладающий этим признаком. Гипергеометрическое распределение имеет случайная величина Y , равная числу объектов, обладающих признаком А в случайной выборке объема n , где n < N . Например, число Y дефектных единиц продукции в случайной выборке объема n из партии объема N имеет гипергеометрическое распределение, если n < N . Другой пример – лотерея. Пусть признак А билета – это признак «быть выигрышным». Пусть всего билетов N , а некоторое лицо приобрело n из них. Тогда число выигрышных билетов у этого лица имеет гипергеометрическое распределение.

Для гипергеометрического распределения вероятность принятия случайной величиной Y значения y имеет вид

(20)

где D – число объектов, обладающих признаком А , в рассматриваемой совокупности объема N . При этом y принимает значения от max{0, n - (N - D )} до min{n , D }, при прочих y вероятность в формуле (20) равна 0. Таким образом, гипергеометрическое распределение определяется тремя параметрами – объемом генеральной совокупности N , числом объектов D в ней, обладающих рассматриваемым признаком А , и объемом выборки n .

Простой случайной выборкой объема n из совокупности объема N называется выборка, полученная в результате случайного отбора, при котором любой из наборов из n объектов имеет одну и ту же вероятность быть отобранным. Методы случайного отбора выборок респондентов (опрашиваемых) или единиц штучной продукции рассматриваются в инструктивно-методических и нормативно-технических документах. Один из методов отбора таков: объекты отбирают один из другим, причем на каждом шаге каждый из оставшихся в совокупности объектов имеет одинаковые шансы быть отобранным. В литературе для рассматриваемого типа выборок используются также термины «случайная выборка», «случайная выборка без возвращения».

Поскольку объемы генеральной совокупности (партии) N и выборки n обычно известны, то подлежащим оцениванию параметром гипергеометрического распределения является D . В статистических методах управления качеством продукции D – обычно число дефектных единиц продукции в партии. Представляет интерес также характеристика распределения D / N – уровень дефектности.

Для гипергеометрического распределения

Последний множитель в выражении для дисперсии близок к 1, если N >10 n . Если при этом сделать замену p = D / N , то выражения для математического ожидания и дисперсии гипергеометрического распределения перейдут в выражения для математического ожидания и дисперсии биномиального распределения. Это не случайно. Можно показать, что

при N >10 n , где p = D / N . Справедливо предельное соотношение

и этим предельным соотношением можно пользоваться при N >10 n .

Третье широко используемое дискретное распределение – распределение Пуассона. Случайная величина Y имеет распределение Пуассона, если

,

где λ – параметр распределения Пуассона, и P (Y = y )= 0 для всех прочих y (при y=0 обозначено 0! =1). Для распределения Пуассона

M (Y ) = λ, D (Y ) = λ.

Это распределение названо в честь французского математика С.Д.Пуассона (1781-1840), впервые получившего его в 1837 г. Распределение Пуассона является предельным случаем биномиального распределения, когда вероятность р осуществления события мала, но число испытаний n велико, причем np = λ. Точнее, справедливо предельное соотношение

Поэтому распределение Пуассона (в старой терминологии «закон распределения») часто называют также «законом редких событий».

Распределение Пуассона возникает в теории потоков событий (см. выше). Доказано, что для простейшего потока с постоянной интенсивностью Λ число событий (вызовов), происшедших за время t , имеет распределение Пуассона с параметром λ = Λt . Следовательно, вероятность того, что за время t не произойдет ни одного события, равна e - Λ t , т.е. функция распределения длины промежутка между событиями является экспоненциальной.

Распределение Пуассона используется при анализе результатов выборочных маркетинговых обследований потребителей, расчете оперативных характеристик планов статистического приемочного контроля в случае малых значений приемочного уровня дефектности, для описания числа разладок статистически управляемого технологического процесса в единицу времени, числа «требований на обслуживание», поступающих в единицу времени в систему массового обслуживания, статистических закономерностей несчастных случаев и редких заболеваний, и т.д.

Описание иных параметрических семейств дискретных распределений и возможности их практического использования рассматриваются в литературе.


В некоторых случаях, например, при изучении цен, объемов выпуска или суммарной наработки на отказ в задачах надежности, функции распределения постоянны на некоторых интервалах, в которые значения исследуемых случайных величин не могут попасть.

Предыдущая

Определение 3. Х имеет нормальный закон распределения (закон Гаусса), если ее плотность распределения имеет вид:

где m = M (X ), σ 2 = D (X ), σ > 0 .

Кривую нормального закона распределения называют нормальной или гауссовой кривой (рис. 6.7).

Нормальная кривая симметрична относительно прямой х = m , имеет максимум в точке х = m , равный .

Функция распределения случайной величины Х, распределенной по нормальному закону, выражается через функцию Лапласа Ф(х ) по формуле:

Ф(x ) – функция Лапласа.

Замечание. Функция Ф(х ) является нечетной (Ф(-х ) = -Ф(х )), кроме того, при х > 5 можно считать Ф(х ) ≈ 1/2.

Таблица значений функции Ф(х ) приведена в приложении (табл. П 2.2).

График функции распределения F (x ) изображен на рис. 6.8.

Вероятность того, что случайная величина Х примет значения, принадлежащие интервалу (a;b ) вычисляются по формуле:

Р (a < Х < b ) = .

Вероятность того, что абсолютная величина отклонения случайной величины от ее математического ожидания меньше положительного числа δ вычисляется по формуле:

P (| X - m| .

В частности, при m =0 справедливо равенство:

P (| X| .

"Правило трех сигм"

Если случайная величина Х имеет нормальный закон распределения с параметрами m и σ, то практически достоверно, что ее значения заключены в интервале (m 3σ; m + 3σ), так как P (| X - m| = 0,9973.

Задача 6.3. Случайная величина Х распределена нормально с математическим ожиданием 32 и дисперсией 16. Найти: а) плотность распределения вероятностей f (x ); Х примет значение из интервала (28;38).

Решение: По условию m = 32, σ 2 = 16, следовательно, σ= 4, тогда

а)

б) Воспользуемся формулой:

Р (a< Х)= .

Подставив a = 28, b = 38, m = 32, σ= 4, получим

Р (28< Х< 38)= Ф(1,5) Ф(1)

По таблице значений функции Ф(х ) находим Ф(1,5) = 0,4332, Ф(1) = 0,3413.

Итак, искомая вероятность:

P (28

Задачи

6.1. Случайная величина Х равномерно распределена в интервале (-3;5). Найдите:

а) плотность распределения f (x );

б) функции распределения F (x );

в) числовые характеристики;

г) вероятность Р (4<х <6).

6.2. Случайная величина Х равномерно распределена на отрезке . Найдите:

а) плотность распределения f (x );

б) функцию распределения F (x );

в) числовые характеристики;

г) вероятность Р (3≤х ≤6).

6.3. На шоссе установлен автоматический светофор, в котором 2 минуты для транспорта горит зеленый свет, 3 секунды - желтый и 30 секунд - красный и т.д. Машина проезжает по шоссе в случайный момент времени. Найти вероятность того, что машина проедет мимо светофора, не останавливаясь.


6.4. Поезда метрополитена идут регулярно с интервалом 2 минуты. Пассажир выходит на платформу в случайный момент времени. Какова вероятность того, что ждать поезд пассажиру придется больше 50 секунд. Найти математическое ожидание случайной величины Х - время ожидания поезда.

6.5. Найти дисперсию и среднее квадратическое отклонение показательного распределения, заданного функцией распределения:

6.6. Непрерывная случайная величина Х задана плотностью распределения вероятностей:

а) Назовите закон распределения рассматриваемой случайной величины.

б) Найдите функцию распределения F (x ) и числовые характеристики случайной величины Х .

6.7. Случайная величина Х распределена по показательному закону, заданному плотностью распределения вероятностей:

Х примет значение из интервала (2,5;5).

6.8. Непрерывная случайная величина Х распределена по показательному закону, заданному функцией распределения:

Найти вероятность того, что в результате испытания Х примет значение из отрезка .

6.9. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины соответственно равны 8 и 2. Найдите:

а) плотность распределения f (x );

б) вероятность того, что в результате испытания Х примет значение из интервала (10;14).

6.10. Случайная величина Х распределена нормально с математическим ожиданием 3,5 и дисперсией 0,04. Найдите:

а) плотность распределения f (x );

б) вероятность того, что в результате испытания Х примет значение из отрезка .

6.11. Случайная величина Х распределена нормально с M (X ) = 0 и D (X )= 1. Какое из событий: |Х |≤0,6 или |Х |≥0,6 имеет большую вероятность?

6.12. Случайная величина Х распределена нормально с M (X ) = 0 и D (X )= 1.Из какого интервала (-0,5; -0,1) или (1; 2) при одном испытании она примет значение с большей вероятностью?

6.13. Текущая цена за одну акцию может быть смоделирована с помощью нормального закона распределения с M (X )= 10 ден. ед. и σ(Х ) = 0,3 ден. ед. Найти:

а) вероятность того, что текущая цена акции будет от 9,8 ден. ед. до 10,4 ден. ед.;

б) с помощью "правила трех сигм" найти границы, в которых будет находиться текущая цена акции.

6.14. Производится взвешивание вещества без систематических ошибок. Случайные ошибки взвешивания подчинены нормальному закону со средним квадратическим отклонением σ= 5г. Найти вероятность того, что в четырех независимых опытах ошибка при трех взвешиваниях не превзойдет по абсолютной величине 3 г.

6.15. Случайная величина Х распределена нормально с M (X)= 12,6. Вероятность попадания случайной величины в интервал (11,4; 13,8) равна 0,6826. Найдите среднее квадратическое отклонение σ.

6.16. Случайная величина Х распределена нормально с M (X ) = 12 и D (X ) = 36. Найти интервал, в который с вероятностью 0,9973 попадет в результате испытания случайная величина Х .

6.17. Деталь, изготовленная автоматом, считается бракованной, если отклонение Х ее контролируемого параметра от номинала превышает по модулю 2 единицы измерения. Предполагается, что случайная величина Х распределена нормально с M (X ) = 0 и σ(Х ) = 0,7. Сколько процентов бракованных деталей выдает автомат?

3.18. Параметр Х детали распределен нормально с математическим ожиданием 2, равным номиналу, и средним квадратическим отклонением 0,014. Найти вероятность того, что отклонение Х от номинала по модулю не превысит 1 % номинала.

Ответы

в) M (X )=1, D (X )=16/3, σ(Х )= 4/ , г)1/8.



в) M (X )=4,5, D (X ) =2 , σ (Х )= , г)3/5.


6.3. 40/51.

6.4. 7/12, M (X )=1.


6.5. D (X ) = 1/64, σ (Х )=1/8

6.6. M (X )=1 , D (X ) =2 , σ (Х )= 1 .


6.7. Р(2,5<Х <5)=е -1 е -2 ≈0,2325 6.8. Р(2≤Х ≤5)=0,252.


б) Р (10 < Х < 14) ≈ 0,1574.

б) Р (3,1 ≤ Х ≤ 3,7) ≈ 0,8185.


6.11. |x |≥0,6.

6.12. (-0,5; -0,1).


6.13. а) Р(9,8 ≤ Х ≤ 10,4) ≈ 0,6562 6.14. 0,111.

б) (9,1; 10,9).


6.15. σ = 1,2.

6.16. (-6; 30).

6.17. 0,4 %.

Нормальный закон распределения наиболее часто встречается на практике. Главная особенность, выделяющая его среди других законов, состоит в том, что он является предельным законом, к которому приближаются другие законы распределения при весьма часто встречающихся типичных условиях (см. гл. 6).

Определение. Непрерывная случайная величина X имеет нормальный закон распределения (закон Гаусса) с параметрами а и а 2 , если ее плотность вероятности имеет вид

Термин «нормальный» не совсем удачный. Многие признаки подчиняются нормальному закону, например, рост человека, дальность полета снаряда и т.п. Но если какой-либо признак подчиняется другому, отличному от нормального, закону распределения, то это вовсе не говорит о «ненормальности» явления, связанного с этим признаком.

Кривую нормального закона распределения называют нормальной , или гауссовой , кривой. На рис. 4.6, а , 6 приведены нормальная кривая фд, (х) с параметрами йио 2 , т.е. И[а а 2), и график функции распределения случайной величины X , имеющей нормальный закон. Обратим внимание на то, что нормальная кривая симметрична относительно прямой х = а, имеет максимум в точке х = а ,

равный , т.е.

И две точки перегиба х = а±

с ординатой

Можно заметить, что в выражении плотности нормального закона параметры обозначены буквами а и ст 2 , которыми мы обозначаем математическое ожидание М(Х ) и дисперсию О(Х). Такое совпадение неслучайно. Рассмотрим теорему, устанавливающую теоретико-вероятностный смысл параметров нормального закона.

Теорема. Математическое ожидание случайной величины X, распределенной по нормальному закону, равно параметру а этого закона, т.е.

а ее дисперсия - параметру а 2 , т.е.

Математическое ожидание случайной величины X:

Произведем замену переменной, положив

Тогда пределы интегрирования не меняются

и, следовательно,

(первый интеграл равен нулю как интеграл от нечетной функции по симметричному относительно начала координат промежутку, а второй интеграл - интеграл Эйлера - Пуассона).

Дисперсия случайной величины X:

Сделаем ту же замену переменной х = а + о^2 t, как и при вычислении предыдущего интеграла. Тогда

Применяя метод интегрирования по частям, получим

Выясним, как будет меняться нормальная кривая при изменении параметров а и с 2 (или а). Если а = const, и меняется параметр а {а х а 3), т.е. центр симметрии распределения, то нормальная кривая будет смещаться вдоль оси абсцисс, не меняя формы (рис. 4.7).

Если а = const и меняется параметр а 2 (или а), то меняется ордината

максимума кривой При увеличении а ордината максимума

кривой уменьшается, но так как площадь под любой кривой распределения должна оставаться равной единице, то кривая становится более плоской, растягиваясь вдоль оси абсцисс; при уменьшении су, напротив, нормальная кривая вытягивается вверх, одновременно сжимаясь с боков. На рис. 4.8 показаны нормальные кривые с параметрами а 1(о 2 и а 3 , где о, а (он же математическое ожидание) характеризует положение центра, а параметр а 2 (он же дисперсия) - фор м у нормальной кривой.

Нормальный закон распределения случайной величины X с параметрами а = 0, ст 2 = 1, г.е. X ~ N( 0; 1), называется стандартным или нормированным, а соответствующая нормальная кривая - стандартной или нормированной.

Сложность непосредственного нахождения функции распределения случайной величины, распределенной по нормальному закону, по формуле (3.23) и вероятности ее попадания на некоторый промежуток по формуле (3.22) связана с гем, что интеграл от функции (4.26) является «нсберу- щимся» в элементарных функциях. Поэтому их выражают через функцию

- функцию (интеграл вероятностей) Лапласа, для которой составлены таблицы. Напомним, что функция Лапласа уже встречалась нам при рассмотрении интегральной теоремы Муавра - Лапласа (см. параграф 2.3). Там же были рассмотрены ее свойства. Геометрически функция Лапласа Ф(.с) представляет собой площадь под стандартной нормальной кривой на отрезке [-х; х ] (рис. 4.9) 1 .

Рис. 4.10

Рис. 4.9

Теорема. Функция распределения случайной величины X, распределенной по нормальному закону, выражается через функцию Лапласа Ф(х) по формуле

По формуле (3.23) функция распределения:

Сделаем замену переменной, полагая при X -> -оо? -» -00, поэтому

1 Наряду с интегралом вероятностей вида (4.29), представляющим функцию Ф(х), в литературе используется его выражения и в виде других табулированных функций:

представляющих собой площади иод стандартной нормальной кривой соответственно на интервалах (0; х], (-оо; х], [-х>/2; Хл/2.

Первый интеграл

(в силу четности подынтегральной функции и того, что интеграл Эйлера - Пуассона равен ).

Второй интеграл с учетом формулы (4.29) составляет

Геометрически функция распределения представляет собой площадь под нормальной кривой на интервале (-со, х) (рис. 4.10). Как видим, она состоит из двух частей: первой, на интервале (-оо, а), равной 1/2, т.е. половине всей площади под нормальной кривой, и второй, на интервале (я, х),

равной

Рассмотрим свойства случайной величины, распределенной по нормальному закону.

1. Вероятность попадания случайной величины X, распределенной по нормальному закону, в интервал [х 1(х 2 ], равна

Учитывая, что согласно свойству (3.20) вероятность Р(х,

где и Г 2 определяются по формуле (4.33) (рис. 4.11). ?

2. Вероятность того, что отклонение случайной величины X, распределенной по нормальному закону, от математического ожидания а не превысит величину А > 0 (по абсолютной величине), равна

а также свойство нечетности функции Лапласа, получим

где? =Д/о (рис. 4.12). ?

На рис. 4.11 и 4.12 приведена геометрическая интерпретация свойств нормального закона .

Замечание. Рассмотренная в гл. 2 приближенная интегральная формула Муавра - Лапласа (2.10) следует из свойства (4.32) нормально распределенной случайной величины при х { = а, х 2 = Ь } а = пр и так

как биномиальный закон распределения случайной величины X = т с параметрами п и р, для которого получена эта формула, при п -> ос стремится к нормальному закону (см. гл. 6).

Аналогично и следствия (2.13), (2.14) и (2.16) интегральной формулы Муавра - Лапласа для числа X = т появления события в п независимых испытаниях и его частости т/п вытекают из свойств (4.32) и (4.34) нормального закона.

Вычислим по формуле (4.34) вероятности Р(Х-а д) при различных значениях Д (используем табл. II приложений). Получим

Отсюда вытекает «правило трех сигм».

Если случайная величина X имеет нормальный закон распределения с параметрами а и а 2 , т.е. М(а; а 2), то практически достоверно, что ее значения заключены в интервале (а - За, а + За).

Нарушение «правила трех сигм», т.е. отклонение нормально распределенной случайной величины X больше, чем на За (но абсолютной величине), является событием практически невозможным, так как его вероятность весьма мала:

Заметим, что отклонение Д в, при котором , называется

вероятным отклонением. Для нормального закона Д в « 0,675а, т.е. на интервал (а - 0,675а, а + 0,675а) приходится половина всей площади под нормальной кривой.

Найдем коэффициент асимметрии и эксцесс случайной величины X, распределенной по нормальному закону.

Очевидно, в силу симметрии нормальной кривой относительно вертикальной прямой х = а, проходящей через центр распределения а = М(Х), коэффициент асимметрии нормального распределения Л = 0.

Эксцесс нормально распределенной случайной величины X найдем по формуле (3.37), т.е.

где учли, что центральный момент 4-го порядка, найденный по формуле (3.30) с учетом определения (4.26), т.е.

(вычисление интеграла опускаем).

Таким образом, эксцесс нормального распределения равен нулю и крутость других распределений определяется по отношению к нормальному (об этом мы уже упоминали в параграфе 3.7).

О Пример 4.9. Полагая, что рост мужчин определенной возраст-ной группы есть нормально распределенная случайная величинах X с параметрами а = 173 и а 2 =36:

  • 1) Найти: а) выражение плотности вероятности и функции распределения случайной величины X; б) доли костюмов 4-го роста (176-182 см) и 3-го роста (170-176 см), которые нужно предусмотреть в общем объеме производства для данной возрастной группы; в) квантиль х 07 и 10%-ную точку случайной величины X.
  • 2) Сформулировать «правило трех сигм» для случайной величины X. Решение. 1, а) По формулам (4.26) и (4.30) запишем

1, б) Доля костюмов 4-го роста (176-182 см) в общем объеме производства определится по формуле (4.32) как вероятность


(рис. 4.14), так как по формулам (4.33)

Долю костюмов 3-го роста (170-176 см) можно было определить аналогично но формуле (4.32), но проще это сделать по формуле (4.34), если учесть, что данный интервал симметричен относительно математического ожидания а = М(Х) = 173, т.е. неравенство 170 X Х -173|

(см. рис. 4.14;.

1, в) Квантиль х 07 (см. параграф 3.7) случайной величины X найдем из уравнения (3.29) с учетом формулы (4.30):

откуда

По табл. 11 приложений находим I- 0,524 и

Это означает, что 70% мужчин данной возрастной группы имеют рост до 176 см.

  • 10%-ная точка - эго квантиль х 09 = 181 см (находится аналогично), т.е. 10% мужчин имеют рост не менее 181 см.
  • 2) Практически достоверно, что рост мужчин данной возрастной группы заключен в границах от а - Зет = 173 - 3 6 = 155 до а + Зет = 173 + 3 - 6 = = 191 (см), т.е. 155

    В силу особенностей нормального закона распределения, отмеченных в начале параграфа (и в гл. 6), он занимает центральное место в теории и практике вероятностно-статистических методов. Большое теоретическое значение нормального закона состоит в том, что с его помощью получен ряд важных распределений, рассматриваемых ниже.

    • Стрелками на рис. 4.11-4.13 отмечены условно п л о щ а д и соответствующих фигурпод нормальной кривой.
    • Значения функции Лапласа Ф(х) определяем но табл. II приложений.

Как известно, случайной величиной называется переменная величина, которая может принимать те или иные значения в зависимости от случая. Случайные величины обозначают заглавными буквами латинского алфавита (X, Y, Z), а их значения – соответствующими строчными буквами (x, y, z). Случайные величины делятся на прерывные (дискретные) и непрерывные.

Дискретной случайной величиной называется случайная величина, принимающая лишь конечное или бесконечное (счетное) множество значений с определенными ненулевыми вероятностями.

Законом распределения дискретной случайной величины называется функция, связывающая значения случайной величины с соответствующими им вероятностями. Закон распределения может быть задан одним из следующих способов.

1 . Закон распределения может быть задан таблицей:

где λ>0, k = 0, 1, 2, … .

в) с помощью функции распределения F(x) , определяющей для каждого значения x вероятность того, что случайная величина X примет значение, меньшее x, т.е. F(x) = P(X < x).

Свойства функции F(x)

3 . Закон распределения может быть задан графически – многоугольником (полигоном) распределения (смотри задачу 3).

Отметим, что для решения некоторых задач не обязательно знать закон распределения. В некоторых случаях достаточно знать одно или несколько чисел, отражающих наиболее важные особенности закона распределения. Это может быть число, имеющее смысл «среднего значения» случайной величины, или же число, показывающее средний размер отклонения случайной величины от своего среднего значения. Числа такого рода называют числовыми характеристиками случайной величины.

Основные числовые характеристики дискретной случайной величины :

  • Mатематическое ожидание (среднее значение) дискретной случайной величины M(X)=Σ x i p i .
    Для биномиального распределения M(X)=np, для распределения Пуассона M(X)=λ
  • Дисперсия дискретной случайной величины D(X)= M 2 или D(X) = M(X 2)− 2 . Разность X–M(X) называют отклонением случайной величины от ее математического ожидания.
    Для биномиального распределения D(X)=npq, для распределения Пуассона D(X)=λ
  • Среднее квадратическое отклонение (стандартное отклонение) σ(X)=√D(X) .

Примеры решения задач по теме «Закон распределения дискретной случайной величины»

Задача 1.

Выпущено 1000 лотерейных билетов: на 5 из них выпадает выигрыш в сумме 500 рублей, на 10 – выигрыш в 100 рублей, на 20 – выигрыш в 50 рублей, на 50 – выигрыш в 10 рублей. Определить закон распределения вероятностей случайной величины X – выигрыша на один билет.

Решение. По условию задачи возможны следующие значения случайной величины X: 0, 10, 50, 100 и 500.

Число билетов без выигрыша равно 1000 – (5+10+20+50) = 915, тогда P(X=0) = 915/1000 = 0,915.

Аналогично находим все другие вероятности: P(X=0) = 50/1000=0,05, P(X=50) = 20/1000=0,02, P(X=100) = 10/1000=0,01, P(X=500) = 5/1000=0,005. Полученный закон представим в виде таблицы:

Найдем математическое ожидание величины Х: М(Х) = 1*1/6 + 2*1/6 + 3*1/6 + 4*1/6 + 5*1/6 + 6*1/6 = (1+2+3+4+5+6)/6 = 21/6 = 3,5

Задача 3.

Устройство состоит из трех независимо работающих элементов. Вероятность отказа каждого элемента в одном опыте равна 0,1. Составить закон распределения числа отказавших элементов в одном опыте, построить многоугольник распределения. Найти функцию распределения F(x) и построить ее график. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной случайной величины.

Решение. 1. Дискретная случайная величина X={число отказавших элементов в одном опыте} имеет следующие возможные значения: х 1 =0 (ни один из элементов устройства не отказал), х 2 =1 (отказал один элемент), х 3 =2 (отказало два элемента) и х 4 =3 (отказали три элемента).

Отказы элементов независимы друг от друга, вероятности отказа каждого элемента равны между собой, поэтому применима формула Бернулли . Учитывая, что, по условию, n=3, р=0,1, q=1-р=0,9, определим вероятности значений:
P 3 (0) = С 3 0 p 0 q 3-0 = q 3 = 0,9 3 = 0,729;
P 3 (1) = С 3 1 p 1 q 3-1 = 3*0,1*0,9 2 = 0,243;
P 3 (2) = С 3 2 p 2 q 3-2 = 3*0,1 2 *0,9 = 0,027;
P 3 (3) = С 3 3 p 3 q 3-3 = р 3 =0,1 3 = 0,001;
Проверка: ∑p i = 0,729+0,243+0,027+0,001=1.

Таким образом, искомый биномиальный закон распределения Х имеет вид:

По оси абсцисс откладываем возможные значения х i , а по оси ординат – соответствующие им вероятности р i . Построим точки М 1 (0; 0,729), М 2 (1; 0,243), М 3 (2; 0,027), М 4 (3; 0,001). Соединив эти точки отрезками прямых, получаем искомый многоугольник распределения.

3. Найдем функцию распределения F(x) = Р(Х

Для x ≤ 0 имеем F(x) = Р(Х<0) = 0;
для 0 < x ≤1 имеем F(x) = Р(Х<1) = Р(Х = 0) = 0,729;
для 1< x ≤ 2 F(x) = Р(Х<2) = Р(Х=0) + Р(Х=1) =0,729+ 0,243 = 0,972;
для 2 < x ≤ 3 F(x) = Р(Х<3) = Р(Х = 0) + Р(Х = 1) + Р(Х = 2) = 0,972+0,027 = 0,999;
для х > 3 будет F(x) = 1, т.к. событие достоверно.

График функции F(x)

4. Для биномиального распределения Х:
- математическое ожидание М(X) = np = 3*0,1 = 0,3;
- дисперсия D(X) = npq = 3*0,1*0,9 = 0,27;
- среднее квадратическое отклонение σ(X) = √D(X) = √0,27 ≈ 0,52.

Понравилась статья? Поделитесь ей
Наверх