Определение упруго деформационных свойств грунтов. Механические свойства грунтов прочностные и деформационные свойства гост

Деформационные и прочностные свойства грунтов и их характеристики.

Сжимаемость грунтов характеризует их способность деформироваться без разрушения под влиянием внешней нагрузки. Деформационные свойства грунтов характеризуются модулем общей деформации Е , коэффициентом Пуассона, коэффициентами сжимаемости и консолидации, модулями сдвига и объемного сжатия. Сжимаемость дисперсных грунтов под нагрузкой обусловлена смещением минеральных частиц относительно друг друга и соответственно уменьшением объема пор.

Прочность грунтов определяется их сопротивляемостью сдвигу , которое можно описать линейной зависимостью Кулона

τ = p tgφ + c ,

где τ – сопротивление сдвигу, МПа; р – нормальное давление,МПа; tg φ – коэффициент внутреннеготрения; φ – угол внутреннего трения, град; c сцепление,МПа.

Величины φ и c необходимы для инженерных расчетов прочности и устойчивости.

Прочность скальных грунтов определяется преимущественно их структурными связями, т.е. сцеплением, но в наибольшей меретрешиноватостью.

Временное сопротивление скального грунта одноосному сжатию (предел прочности на сжатие) является важной классификационной характеристикой, по которой проводится отнесение грунта к скальному (> 5 МПа) или нескальному (< 5 МПа).

Химико-минеральный состав, структуры и текстуры грунтов, содержание органического вещества определяют в геологических лабораториях, оснащенных необходимой аппаратурой (рентгеноэлектронный микроскоп и т. д.). Физико-механические свойства грунтов изучают в грунтоведческих лабораториях и в полевых условиях на будущих строительных площадках. Особое внимание при этом обращается на достоверность получаемых результатов .

По каждой характеристике грунтов выполняется несколько определений и проводится их статистический анализ. Для любого ИГЭ определений должно быть не менее трех.

Грунтоведческая лаборатория. Образцы грунтов для лабораторных исследований отбираются по слоям грунтов в шурфах и в буровых скважинах на объектах.

В лабораторию образцы грунтов доставляют в виде монолитов или рыхлых проб. Монолиты - это образцы грунтов с ненарушенной структурой, которые должны иметь размеры 20 х 20 х 20 см. У пылевато-глинистых грунтов нужно сохранять природную влажность за счет водонепроницаемой парафиновой или восковой оболочки на их поверхности В рыхлых грунтах (песок, гравий и т. д.) образцы отбираются массой не менее 0,5 кг.

В лабораторных условиях можно определять все физико-механические характеристики, причем каждую согласно своему ГОСТ: природная влажность и плотность грунта – ГОСТ 5180-84, предел прочности – ГОСТ 17245-79, гранулометрический (зерновой) состав – ГОСТ 12536-79 и т. д. В лаборатории определяют влажность, плотность частиц грунта и некоторые другие.



Полевые работы. Исследование грунтов в полевых условиях дает преимущество перед лабораторным анализом, поскольку позволяет определять все значения физико-механических характеристик при естественном залегании грунтов без разрушения их структуры и текстуры, с сохранением режима влажности. При этом моделируется работа массивов грунтов в основаниях зданий и сооружений. Такие исследования грунтов в последние годы используют все больше.При этом совершенствуется техническая оснащенность, применяютсяЭВМ. Экспресс-методы позволяют быстрее получать свойства грунтов. Чтобы прогнозировать поведение массивов грунтов на период эксплуатации зданий и сооружений, целесообразно разумно сочетать лабораторные и полевые исследования.

Среди методов деформационных испытаний грунтов на сжимаемость следует считать эталонным метод полевых штамповых испытаний (ГОСТ 20278-85). Результаты других методов испытаний, как полевых (прессиометрия, динамическое и статическое лидирование), так и лабораторных (компрессионные и стабилометрические) обязательно должны сопоставляться с результатами штамповых испытаний.

При определении прочностных характеристик грунтов наиболее достоверные результаты дают полевые испытания на срез целиков грунта непосредственно на строительной площадке(ГОСТ 23741-79). Из-за высокой стоимости и трудоемкости эти работы проводят толькодля сооружений I уровня (класса) ответственности. К ним относятся здания и сооружения, имеющие большое хозяйственное значение, социальные объекты и требующие повышенную надежность (главные корпусы ТЭС. АЭС, телевизионные башни, промышленные трубы выше 200 м, здания театров, цирков, рынков, учебных заведений и т, д.).

Для других случаев строительства (II и III класс сооружений) достаточно надежные показатели с и φ получают в результате лабораторных испытаний грунтов в приборах плоского среза (ГОСТ 12248-78) и трехосного сжатия (ГОСТ 26518-85).

Прочностные характеристики можно также определять по методу лопастного зондирования, результаты которого при проектировании ответственных сооружений сопоставляют со сдвиговыми испытаниями для обеспечения достоверности результатов.

Деформационные испытания грунтов. Сжимаемость грунтов изучают методами штампов, прессиометрами, динамическим и статически зондированием.

Метод ш т а м п о в . В нескальных грунтах на дне шурфов или в забое буровых скважин устанавливают штампы, на которые передаются статические нагрузки (ГОСТ 20276-85). Штамп в шурфе это стальная или железобетонная круглая плита площадью 5000 см 2 . Для создания под штампом заданного давления применяют домкраты или платформы с грузом (рис. 49).

Осадку штампов измеряют прогибомерами. В шурфе на отметке подошвы штампа и вне его отбирают образцы грунтов для параллельных лабораторных исследований. Штамп загружают ступенями в зависимости от вида грунта и его состояния, выдерживая до стабилизации деформаций. В итоге испытания строят графики зависимостей осадки штампа от давления и от времени по ступеням нагрузки.После этого по формуле вычисляют модуль деформации грунта Е , МПа.

Штамп в буровой скважин е. Испытание грунтов проводят в скважине диаметром более 320 мм глубиной до 20 м. На забой скважины опускают штамп площадью 600 см 2 . Нагрузка на штамп передается через штангу, на которой располагается платформа с грузом. Модуль деформации также определяют по формуле.

Прессиометрические исследования проводят в глинистых грунтах. Прессиометр представляет собой резиновую цилиндрическую камеру, опускаемую в скважину на заданную глубину и расширяемую давлением жидкости или газа. При создаваемых давлениях замеряют радиальные перемещения стенок скважины, что позволяет определять модуль деформации и прочностные характеристики грунта.

Рис. 49. Определение сжимаемости грунтов штампами:

а, б – шурфы; в – буровая скважина; 1 – штампы; 2 – домкрат;

3 – анкерные сваи; 4 – платформа с грузом; 5 - штанга

Зондирование (или пенетрация ) используется для изучения толщ грунтов до глубины 15 – 20 м. По сопротивлению проникновения в грунт металлического наконечника (зонда) определяют плотность и прочность грунтов и их изменчивость в вертикальном разрезе. Зондирование относится к экспресс-методам определения механических свойств песчаных, глинистых и органогенных грунтов, которые не содержат или имеют мало примесей щебня или гальки. По способу погружения наконечника различают зондирование динамическое и статическое . При статическом зондировании конус в грунт задавливается плавно, а при динамическом его забивают молотом.

Статическое и динамическое зондирования позволяют:

Расчленить толщу грунта на отдельныеслои;

Определить глубину залегания скальных и крупнообломочных грунтов;

Установить приблизительно плотность песков, консистенцию глинистых грунтов, определить модуль деформации;

Оценить качество искусственно уплотненных грунтов в насыпях и намывных образованиях;

Измерить мощность органогенных грунтов на болотах.

На рис. 50 показана пенетрационно-каротажная станция.

Рис. 50. Пенетрационно-каротажная станция:

1 – зонд-датчик; 2 – штанга; 3 – мачта; 4 – гидроцилиндр; 5 – канал связи; 6 – аппаратная станция; 7 – пульт управления

Прочностные испытания грунтов. Сопротивление грунтов сдвигу определяется предельными значениями напряжений при разрушении. Опыты проводят в котлованах, оставляя столбчатые целики ненарушенного грунта, к которым прикладывают сжимающие и сдвигающие усилия. Для правильного определения внутреннего трения и удельного сцепления опыт проводят не менее чем на трех целиках при различных сжимающих усилиях. Сдвиг производят также при вращении крыльчатки, которая представляет собой четырехлопастной прибор. Его вдавливают в грунт и поворачивают, измеряя при этом крутящий момент, по которому рассчитывают сопротивление сдвигу.

Опытные строительные работы . При строительстве объектов I уровня ответственности (класса) полевые исследования грунтов приобретают особо важное значение, поэтому прибегают к опытным работам.

Опытные сваи . На строительной площадке погружают инвентарную сваю и наблюдают за характером ее погружения и сопротивляемостью грунта. Прикладывая к свае нагрузки и измеряя осадки при каждой ступени определяют несущую способность грунта в условиях природной влажности и при замачивании . Результаты испытаний сравнивают с расчетными данными на базе лабораторных исследований грунта.

Опытные фундаменты . Устраивают фундаменты будущего здания в натуральную величину и на проектную глубину. На фундамент прикладывают нагрузку как от будущего здания и ведут наблюдения за сжатием грунта основания. Так определяют реальную несущую способность грунта и осадку будущего здания.

Опытные здания . Количественную оценку просадочных свойств лессов дают по данным лабораторных и полевых испытаний грунтов. В реальных условиях под возведенными зданиями в натуральную величину лессовое основание насыщают водой и проводят наблюдения за характером развития процесса, определяют значения просадок и оценивают состояние конструкций здания. Аналогичные опытные работы выполняют и при оценке динамических воздействий на конструкции зданий и основания.

Обработка результатов исследований грунтов . Оценку свойств массивов грунтов проводят на основе физико-механических характеристик в результате лабораторных исследований отдельных образцов грунтов и полевых работ на территории массива. Полученные в лаборатории и в поле характеристики отвечают только тем местам, где были отобраны образцы и проведены полевые испытания грунтов. В связи с этим разрозненные результаты исследований и нормативные показатели необходимо обобщить, т. е. статистически обработать с целью получения усредненных значений и последующего использования в расчетах оснований.

Стационарные наблюдения при инженерно-геологических и гидрогеологических исследованиях проводят для оценки развития неблагоприятных геологических процессов (карста, оползней и др.), режима подземных вод и температурного режима На выбранных характерных участках для наблюдений устанавливают сеть реперов и ведут инструментальные наблюдения за их перемещением и т. д. Измерения выполняют в период эксплуатации зданий и сооружений, но они могут быть начаты и в периодих проектирования. Продолжительность работ – до 1 года и более.

Механическими называют свойства, которые оказывают решающее влияние на деформацию и прочность грунта под нагрузкой.
Деформации грунтов под нагрузкой сопровождаются сложными процессами: сжатием твердых частиц, сжатием воды и воздуха, находящихся в порах грунта, разрушением связей между частицами и их взаимным смещением, изменением толщины пленок воды и отжатием свободной воды из пор грунта.
Эти процессы приводят к деформациям, которые можно разделить на упругие, т. е. исчезающие после снятия нагрузки, и остаточные.
Нагрузку на грунтовое основание можно увеличивать до тех пор, пока не наступает резкого увеличения деформаций основания, связанного с развитием в нем сдвигов. Чем выше сопротивляемость грунта сдвигу, тем большую нагрузку он может воспринять.
Сопротивление грунта сдвигу. Прочность грунтов в основании зависит главным образом от сопротивления сдвигу частиц относительно друг друга вследствие наличия между ними сил трения и сцепления. Сопротивление взаимному сдвигу двух частиц или двух групп частиц можно схематически проиллюстрировать на примере сдвига двух тел.
Сжимаемость грунтов и их компрессионные испытания. Модуль деформации грунтов. Характерные свойства грунтов изменять под воздействием нагрузки свой, объем вследствие упругого обжатия или обжатия со взаимным перемещением частиц без нарушения сплошности называют их деформативными свойствами. Основными характеристиками деформативных свойств грунтов являются модуль общей деформации и коэффициент бокового расширения.

Деформационные свойства характеризуют поведение грунта под нагрузками, не превышающими критические и, следовательно, не приводящими к разрушению. Эти свойства можно выразить двумя парами показателей: либо модулем деформации и коэффициентом Пуассона, либо модулями сдвига и объемного сжатия.

Прочностные свойства характеризуют поведение грунта под нагрузками, равными или превышающими критические, и определяются только при разрушении грунта. Сдвиг и разрыв - два основных механизма потери прочности телом. Сдвиг происходит под действием касательных сил; при сдвиге одна часть тела перемещается относительно другой. Разрыв тела происходит под действием нормальных растягивающих, сил и морфологически выражается в виде трещин и отделении одной части тела от другой.Основным показателем прочности грунтов является их сопротивление сдвигу; сопротивление разрыву определяется значительно реже. В практике инженерно-геологических изысканий часто определяют сопротивление грунтов одноосному сжатию..

Конец работы -

Эта тема принадлежит разделу:

Структура, задачи геологии, её роль в строительной отрасли

В строительной практике любые горные породы и почвы называют грунтами грунт представляет собой минеральную или органоминеральную дисперсную фазовую.. и горные породы которые находятся в верхней части литосферы и являются.. анализу для выбора оптимальных проектных решений по размещению сооружении конструкций и способов производства..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

История развития геологии. Основные этапы развития
Как наука историческая геология начала формироваться на рубеже 18-19 веков, когда У.Смит в Англии, а Ж.Кювье и А. Броньяр во Франции пришли к одинаковым выводам о последовательной смене слоев и нах

Каковы задачи инженерной геологии в строительстве
В процессе инженерно-геологических исследований собирают сведения о физико-географической обстановке, климате, растительности, животном мире, об опыте строительства и эксплуатации сооружений, эконо

Методы, используемые в инженерной геологии
С помощью геофизических методов можно решить ряд важных инженерно-геологических задач. При проведении инженерно-геологических исследованийчасто используют:электрор

Основная технологическая последовательность проектирования сооружений
Инженерно-геологические изыскания нужны для определения особенностей геологического строения участка строительства.Изыскательские работы включают в себя бурение скважин, отбор образцов гру

Какие гипотезы о происхождении Земли Вы знаете
Гипотеза Канта-ЛапласаОни полагали, что прародительницей Солнечной системы является раскаленная газово-пылевая туманность, медленно вращавшаяся вокруг плотного ядра в центре. Под в

Опишите строение земного шара и его внешние и внутренние оболочки
Строение земного шара явилось результатом сложных процессов, протекающих как в недрах Земли, так и на ее поверхности. Земля имеет форму геоида (греч. ge - земля, eidos - вид), т. е. шара, несколько

Что изучает палеонтология
Палеонтоло́гия (от др.-греч. παλαιοντολογία) - наука об ископаемых останках растений и животных, пытающаяся реконст

Что изучает геотектоника
Геотектоника - раздел геологии, наука о строении, движениях и деформациях литосферы, о её развитии в связи с развитием Земли в целом. Геотектоника составляет теоретическую сердцевину всей геологии[

Основные черты рельефа земной поверхности
Наиболее характерная черта лика Земли - антиподальное, т. е. противостоящее, расположение океанических и материковых пространств. Антиподами материков на одной стороне глобуса служат океаны на прот

Основные тектонические структуры
Тектонические структуры - Это большие участки земной коры, ограниченные глубинными разломами. Строение и движения земной коры изучает геологическая наука тектоника. Как вы уже знаете, круп

Тектонические движения земной коры
Тектоническими нарушениями называются перемещения вещества земной коры под влиянием процессов, происходящих в более глубоких недрах Земли. Эти движения вызывают тектонические нарушения, т. е. измен

Как определяются элементы залегания пласта
Элементы залегания геологических границ (пластов, поверхностей напластования и несогласий, тектонических) не всегда удаётся замерить в обнажениях. Их можно определить: по видимым наклонам в обнажен

Складки и их элементы
Среди складок выделяются элементарные типы складок – антиклинальные и синклинальные, нейтральные, а так же антиформы и синформы. Антиклинальными складками или антиклиналями называются изг

Элементы складки
В складке выделяются следующие элементы – замок или свод, крылья, осевая поверхность, осевая линия или ось складки, шарнир складки, гребень и киль, гребневая и килевая поверхность, линия перегиба и

Типы разрывных и неразрывных нарушений (дислокаций)
Разрывные нарушения. Выделяется три основных типа разрывных нарушений, влияющих на формирование ландшафтной структуры территории. В первом случае по разрывным нарушениям возникает ослабленна

Что называется платформой и какого ее строение
Платформа - относительно устойчивый блок континентальной коры. Платформы представляют собой обширные малоподвижные участки земной коры - наиболее устойчивые глыбы, создающие её твёрдый каркас. Стро

Перечислите основные свойства минералов
Долгое время основными характеристиками минералов служили внешняя форма их кристаллов и других выделений, а также физические свойства (цвет, блеск, спайность, твердость, плотность и проч.), имеющие

Перечислите процессы минералообразования
ПРОЦЕССЫ МИНЕРАЛООБРАЗОВАНИЯ - физико-хим. процессы, протекающие в земной коре и вызывающие образование, изменение и разрушение м-лов. Классификация П. м. основана, с одной стороны, на источнике ве

Важнейшие породообразующие минералы
Среди большого разнообразия природных минералов только небольшая их часть участвует в образовании горных пород. К числу этих минералов, называемых породообразующими, относятся кварц, полевые шпаты,

Для чего нужна шкала Мооса
Для измерения твердости минералов делались попытки применить всевозможные методы, основанные на сопротивлении камней царапанию, истиранию, сверлению, деформации поверхности… Но все эти попытки не и

Инженерно - геологические особенности магматических и метаморфических горных пород
Инженерно-геологические особенности метаморфических горных пород Физико-механические свойства метаморфических горных пород во многом близки к магматическим, что обу

Какие формы интрузивных тел вы знаете
Теоретически интрузивные тела бывают любых размеров и любой формы, однако обычно их можно отнести к одной из разновидностей, характеризующихся определенными размерами и формой. Дайки - пла

Какие виды метаморфизма вы знаете
Метаморфизм представляет собой сложное физико-химическое явление, обусловленное комплексным воздействием температуры, давления и химически активных веществ. Он протекает без сущест

Какие факторы обусловливают метаморфизм
Метаморфизм - преобразование горных пород под действием эндогенных процессов, вызывающих изменение физико-химических условий в земной коре. Преобразованию могут подвергаться любые горные породы - о

Какие метаморфические породы вам известны
Метаморфические горные породы - результат преобразования пород разного генезиса, приводящего к изменению первичной структуры, текстуры и минерального состава в соответствии с новой физико-химическо

Горные породы биохимического происхождения
Породы биохимического происхождения. В зависимости от состава выделяют кремнистые(трепел, опоки, некоторые яшмы), карбонатные (известняки, доломиты, мергели) ифосфатные породы.

Физические свойства грунтов. Показатели физических свойств грунтов. Методы их определения
физич.св-ва грунтов: плотность, влажность, прочность, сцепление, кусковатость, разрыхляемость, угол естественного откоса и размываемость. Плотностью р называется отношение массы грунта, вк

Плотность грунтов, основные показатели
Плотностью р называется отношение массы грунта, включая массу воды в его порах, к занимаемому этим грунтом объему. Плотность песчаных и глинистых грунтов - 1,5...2 т/м3; полускальных неразрыхленных

Основные свойства глинистых пород
Особые свойства глинистых пород во многом определяются кристаллохимическими особенностями глинистых минералов и их высокой дисперсностью (то есть чрезвычайно малым размером частиц) . Наиболее ти

Определение сопротивления грунтов сдвигу. Формула Кулона. Приборы. Построение графиков. Паспорт сдвига
Сопротивление грунтов сдвигу является их важнейшим прочностным показателем. Оно необходимо для расчета устойчивости и прочности оснований, оценки устойчивости откосов, расчета давления грунтов на п

Какая горная порода самая прочная
Глубинные горные породы (магматические) характеризуются высокой плотностью, морозостойкостью и малым во до поглощением. Основные виды глубинных горных пород - граниты, сиениты, габбро, лабра-дориты

Физико-химические свойства грунтов, их значение в строительной практике. Тиксотропия
Физ.св-ва: В первую очередь к физическим свойствам относятся: удельная и объемная масса, а также скважность (порозность) грунтов. Отношение твердой фазы сухой почвы к весу равного объема воды п

Грунт как многофазная система. Характер структуры связей в грунте
Дисперсные грунты представляют собой многофазную систему. Они состоят из двух или более веществ, распределённых одно в другом. Примером такой системы является глинистая суспензия, состоящая

Массив горных пород как объект инженерно-геологического исследования
На основе инженерно-геологических данных массива горных пород выбирают оптимальные проектные решения разработки месторождения, в связи с чем затраты на инженерно-геологические работы оправдываются

При взаимодействии с инженерными сооружениями
В зависимости от горно-геологических условий и характера проектируемых горных работ поведение и свойства горных пород массива приближённо отображают механическими закономерностями различных идеализ

Оценка трещиноватости, меры борьбы
Степень трещиноватости пород вместе с другими тектоническими нарушениями характеризует структуру массива горных пород, ее пространственную неоднородность и анизотропность свойств. Она влияет на про

Критерии оценки степени трещиноватости
Критерием количественной оценки степени трещиноватости выбирают показатели, учитывающие размеры и густоту трещин. Различают три вида показателей: линейн

Разновидности трещин
Трещины представляют собой плоские разрывы сплошной среды в случае, если их величина на порядок и больше превосходит межатомные расстояния в кристаллической решетке. Выделяют трещины трех порядков:

Характеристики трещиноватости
От степени трещиноватости зависит правильный выбор системы разработки и параметров буровзрывных работ. В старину трещиноватость оценивали акустическим методом, ударяя по породе молотком и выслушива

Теории происхождения подземных вод
1. Инфильтрационная теория.Основные положения: подземные воды происходят из атмосферных осадков, которые по мельчайшим канальцам горных пород проникают в землю, где и скапливаются, что происходит н

Подземный и поверхностный сток
Поверхностный сток, процесс перемещения воды по земной поверхности под влиянием силы тяжести. Поверхностный сток делится на склоновый и русловой. Склоновый сток образуется з

Физические свойства подземных вод
Согласно ГОСТ, к физическим свойствам подземных вод относятся также плотность, вязкость, электропроводность, радиоактив­ность и др. Плотность воды - масса воды, нах

Основные химические компоненты подземных вод
ионно-солевой состав. Подземная вода не встречается в химически чистом виде. В ней обнаружено более 60 элементов периодической системы Менделеева. Основные компоненты (ионы), определяющие химически

Агрессивность и жесткость подземных вод
Чаще всего анализы воды проводятся на пробах, где общее количество растворенных твердых веществ составляет лишь небольшую долю одного процента от общего веса пробы воды. Поэтому минерализацию воды

Формула Курлова
Курлов, 1921, - псевдоформула, наглядно изображающая основные свойства хим. сост. воды. В числителе дроби пишут анионы, в знаменателе - катионы, присутствующие в количестве более 5%-экв. (из расчет

Разгрузки
Верхняя часть земной коры залегающая выше уровня грунтовых вод называется зоной временного содержания воды или зоной аэрации. Зона аэрации измеряется от 0 (болота) до 50-100 (пустыни) зоны питания

Разгрузки
Грунтовыми называют свободные воды первого от поверхности постоянно существующего водоносного горизонта, залегающего в зоне полного насыщения. Область питания грунтовых вод, как правило, совпадает

Карты гидроизогипс и гидроизобат. Их анализ
Карта гидроизогипс - карта, на которой отображается положение зеркала грунтовых вод в виде гидроизогипс. ГИДРОИЗОБАТЫ- линии, соединяющие на плане (карте) точки зеркала подземных вод, расположенные

Разгрузки Элементы артезианских бассейнов. Карты гидроизопьез
Артезианскими называют напорные подземные воды, находящиеся в водопроницаемых (пористых, трещиноватых, закарстованных) пластах, перекрытых и подстилаемых водонепроницаемыми породами. Эти воды всюду

Назовите водные и физические свойства горных пород
Под водными свойствами горных пород понимаются те, которые проявляются в них при взаимодействии с водой: водопроницаемость, влагоемкость, водоотдача, естественная влажность, набухание, размокание,

Поднятие, водоотдача, водопоглащение, водонасыщение
Одними из главных свойств породы, определяющими ее отношение к воде, являются пористость и скважность. Под пористостью понимают наличие в породах малых пустот - капиллярных пор, под скважностью - н

Пористость, плотность, влажность
Физические свойства характеризуют физическое состояние горных пород, т.е. качественную определенность, проявляющуюся в их плотности, влажности, пористости, трещиноватости и выветрелости в условиях

Назовите виды воды в горных породах
1)Вода в форме пара. Этот вид воды присутствует в воздухе, заполняющем трещины и пустоты между частицами породы. 2)Вода в форме льда. Лёд в почвах и пород

Движение. Формула Дарси. Как отличаются ламинарное и турбулентное
движение подземных вод? Скорость движения (фильтрации) подземных вод характеризуется законом Дарси «Количество воды Q, прошедшее через какое-либо сечение F в единицу вр

Методы определения коэффициента фильтрации (КФ)
1) фильтрационными приборами в лабораториях Коэффициент фильтрации k определяется в лаборатории на специальной установке, в которую закладывается образец испытуемого грунта.

Галереи и пр.). Назовите как отличаются водозаборы по характеру вскрытия
Горизонтальные водозаборы применяют при небольшой глубине залегания водоносного пласта (до 5 - 8 м) и малой его мощности. Они представляют собой дренажные трубы или галереи (рис. 4), размещаемые в

Мощность, линии тока, линии равного напора, скорость, расход
Напо́р- величина давления жидкости, выражаемая высотой столба жидкости над выбранным уровнем отсчёта; измеряется в линейных единицах. НАПОРНЫЙ ГРАДИЕНТ

Основные виды
[править]Пластовый дренаж Пластовая дренажная система укладывается в основании защищаемого сооружения непосредственно на водоносный грунт. При этом она гидравлически связа

Понятие о депрессионной воронке и радиусе влияния
При откачке воды из скважин вследствие трения воды о частицы грунта происходит воронкообразное понижение уровня воды. Образуется депрессионная воронка, в плане имеющая форму, близкую к кру

Факторы определяющие развитие геологических и инженерно-геологических процессов и явлений
Экзогенными (от греч. éxo – вне, снаружи) называют геологические процессы, которые обусловлены внешними по отношению к Земле источниками энергии: солнечной радиацией и гравитационным полем.

Эндогенные инженерно-геологические процессы и явления. Общая характеристика
Эндогенными (внутренними) процессами называются такие геологические процессы, происхождение которых связано с глубокими недрами Земли. Вещество земного шара развивается во всех сво

Что называется землетрясением,гипоцентром,эпицентром
Землетрясе́ния - подземные толчки и колебания поверхности Земли, вызванные естественными причинами (главным образом тектоническими процессами), или (иногда) искусственными про

Сейсмические волны и их измерение
Скольжению пород вдоль разлома вначале препятствует трение. Вследствие этого, энергия, вызывающая движение, накапливается в форме упругих напряжений пород. Когда напряжение достигает критической то

Типы сейсмических волн
Сейсмические волны делятся на волны сжатия и волны сдвига. § Волны сжатия, или продольные сейсмические волны, вызывают колебания частиц пород, сквозь которые они проходят, вд

Техногенные землетрясения
В последнее время появились сведения, что землетрясения могут вызываться деятельностью человека. Так, например, в районах затопления при строительстве крупных водохранилищ, усиливается тектоническа

Шкала магнитуд
Шкала магнитуд различает землетрясения по величине магнитуды, которая является относительной энергетической характеристикой землетрясения. Существует несколько магнитуд и соответственно магнитудных

Шкалы интенсивности
Основная статья: Интенсивность землетрясения Интенсивность является качественной характеристикой землетрясения и указывает на характер и масштаб воздействия

Какие основные факторы ваветривания и чем представлены зоны коры выветривания полного профиля
Выветривание, процесс разрушения и изменения горных пород в условиях земной поверхности под влиянием механического и химического воздействия атмосферы, грунтовых и поверхностных вод и организмов. П

Что такое эволюция, делювий, пролювий, коллювий, аллювий. Их инженерно геологические особенности
Элювий (элювиальные отложения) (лат. eluo - «вымываю») - рыхлые геологические отложения и почвы, формируемые в результате выветривания поверхностных горных пород на месте пе

Речные долины. Речная эрозия. Базис эрозии
Доли́на (речная) - отрицательная, линейно вытянутая форма рельефа с однообразным падением. Образуется обычно в результате эрозионной деятельности текучей воды. Речная в

Линейная эрозия
В отличие от поверхностной, линейная эрозия происходит на небольших участках поверхности и приводит к расчленению земной поверхности и образованию различных эрозионных форм (промоин, оврагов, балок

Селевые процессы, их деление
По механизму движения селевые потоки можно разделить на два типа. 1 тип - связные («грязевые» и «грязекаменные») потоки с преобладанием вязкого течения. 2 тип - несвязные («водно-каменные») потоки

Развитие карста
Наиболее характерны для карста отрицательные формы рельефа. По происхождению они подразделяются на формы, образованные путём растворения (поверхностные и подземные), эрозионные и смешанные. По морф

Понятие суффозия, плывун, причина возникновения, меры борьбы
Суффозия (от лат. suffosio - подкапывание) - вынос мелких минеральных частиц породы фильтрующейся через неё водой. Процесс близок к карсту, но отличается от него тем, что су

Истинные плывуны
Часто плывунные свойства проявляют пылеватые пески и супеси, насыщенные водой, содержащие в большом количестве очень мелкие частицы (глинистые и коллоидные), которые начинают играть роль смазывающе

Ложные плывуны
Ложный плывун - мелкий пористый песок, насыщенный водой. Поскольку пласт находится на глубине, вода в порах плывуна находится под давлением больше атмосферного. При вскрытии пласт обнажается, и вод

Инженерно-геологическая оценка многолетнемерзлых пород
Распространение мёрзлых толщ подчинено широтной и высотной зональности. По среднегодовым температурам, характеру распространения и мощности на многлетнемёрзлых пород выделяются пять зон. Непрерывно

Напряженное состояние горных пород
Напряженное состояние земной коры характеризует не только сами поверхностные слои, которые можно наблюдать непосредственно, но и более глубинные части земной коры, причем величина напряжения состав

Назовите критерии оценки инженерно-геологических условий местности
Инженерно-геологические изыскания. 1 сбор и обработка материалов ранее выполненных работ; 2 полевые работы (бурение и опробование скважин, полевые исследования грунтов); 3 гидрогеологическ

Требования к построению карт. Чтение геологических разрезов и карт
Геологическая карта, отображающая горизонтальное залегание горных пород, имеет свои особенности:  наиболее молодые породы занимают наиболее высокие участки местности (вершины гор),

Построение и анализ карт гидроизогипс

Определение расхода подземного потока
Расчет производится по карте гидроизогипс, построенной по даннымизмерения уровней в скважинах, в местах выхода родников а)H1 = h1 и H2 = h2 б)

Практика построение карты гидроизогипс по данным буровых скважин
Питание грунтовых водза счет поверхностных происходит повсеместно (уровень поверхностных и подземных вод колеблется в зависимости от времени года). В результате, между поверхностны

Построение и анализ инженерно-геологических разрезов. Практика построения
Инженерно-геологическиеразрезы (профили) – широко применяемая форма графической обработки и обобщения информации, характеризует инженерно-геологические и гидрогеологические условия

Построения геологической колонки скважины, пробуренной в пределах геологической карты
Для построения геологической колонки скважины используются описания буровых скважин, пробуренных в пределах геологической карты. Для построения геологической колонки, например скважины № 6,

Этапы инженерно-геологические изыскания для строительства
Инженерные изыскания являются важной частью строительного проектирования. В результате комплекса мероприятий поступают необходимые данные о природных условиях района, где планируется строительство.

Современные методы исследования и обработки инженерно-геологической информации
Для получения, накопления, хранения и обработки инженерно-геологической информации используют различные методы, которые целесообразно разделить на методы: получения информации - М11

Методы инженерно-геологического опробования и последовательность опробования
Инженерно-геологическое опробование - метод, включающий методы установления объема и параметров cппинфов, способы отбора образцов грунтов и их консервации. Этот метод совместно с другими методами (

Как известно, под действием давления грунт деформируется. Характер и величина деформации зависят от природы грунта, способа нагружения и граничных условий деформирования грунта. Деформационные свойства грунтов определяют следующие основные природные факторы: 1) структура и текстура; 2) состав и концентрация порового раствора; 3) химико-минералогический состав скелета грунта; 4) температура окружающей среды. Влияние тех или иных природных факторов на деформируемость грунтов зависит главным образом от структуры грунта, т.е. от дисперсности, плотности и расположения частиц в пространстве и связей между частицами. В зависимости от способа нагружения грунта различают деформации при статическом (ступенчатом), ударном и динамическом способах приложения давления. Наиболее часто деформационные свойства грунтов оснований сооружений определяют при статическом нагружении. В особых случаях деформационные свойства грунтов определяют при действии ударной нагрузки (трамбование, взрыв и т.п.), при вибрации, а также при воздействии гидростатического, главным образом отрицательного (капиллярного) давления, возникающего при водопонижении в дисперсных грунтах.

Деформационные свойства дисперсных грунтов определяются их сжимаемостью под нагрузкой, обусловленной смещением частиц относительно друг друга и соответственно уменьшением объема пор, вследствие деформации частиц породы, воды, газа. При определении сжимаемости грунтов различают показатели, характеризующие зависимость конечной деформации от нагрузки и изменение деформации грунта во времени при постоянной нагрузке. К первой характеристике показателей относятся коэффициент уплотнения, коэффициент компрессии, модуль осадки, ко второй – коэффициент консолидации.

Деформационные свойства грунтов определяют как в лабораторных условиях на образцах с нарушенными или ненарушенными структурными связями, так и в полевых условиях. Лабораторные испытания до настоящего времени являются основным методом изучения свойств грунтов, так как позволяют сравнительно просто передавать различные давления на грунт, исследовать поведение грунта в широких диапазонах изменения физического состояния и условий окружающей среды, моделировать сложные случаи работы грунта в основании или теле сооружений. Полевые методы испытания позволяют более правильно отразить влияние текстурных особенностей грунта на его деформируемость.

Для исследования сжимаемости грунтов в полевых условиях применяют прессиометр - прибор, основанный на обжатии и измерении деформации грунта, находящегося в стенках необсаженной скважины, и определении модуля сжимаемости.

20. К основным характеристикам прочностных свойств грунтов относятся: сопротивление сдвигу грунта по грунту и по поверхностям смерзания; сопротивление сжатию, растяжению; сцепление и угол внутреннего трения, эквивалентное сцепление.

Различают простое и сложное напряжённые состояния в грунте.

Простое напряжённое состояние соответствует проявлению одного из видов напряжений: сжатия, растяжения, сдвига. Напряжённое состояние в массиве грунта, соответствует сложному напряжённому состоянию, когда проявляются одновременно при различном сочетании все виды простых напряжённых состояний.

Они позволяют прогн-ть осадки сооружений, определять устойчивость пород в их основании, а при конструировании фундаментов предельно использовать несущие способность грунтов. Показателями, выраж-щие сопротивление пород сдвигу, дают возможность проектировать заложение откосов плотин, насыпей, дамб, бортов карьеров с минимальным объемом земляных работ, определять устойчивость склонов и оползней, определять рац-е сечение и устойчивость различных сооружений в т.ч. бетонных плотин. Сжимаемостью породы называют ее способность к уменьшению объема под воздействием нагрузки. При сжатии породы вертикальной нагрузкой в условиях свободного бокового расширения при одноосном сжатии относительной деформацией (е) называют отношение величины абсолютного уменьшения нагруженного образца (Δh) к его начальной высоте (h 0) е=Δh/h 0 Зависимость между напряжением (δ) и величиной относ-й деформации (е) при нагрузках меньше предела пропор-сти определяется выражением: δ=Ее (Е – модуль упругости)..

Сопротивление сдвигу . Прочностные свойства пород определяются рядом показателей, относящихся к категории прямых расчетных показателей. Прочность пород характеризуется способностью сопротивляться сдвигающим усилиям (сопротивление к сдвигу). Сдвигом называется процесс деформации и разрушения породы вследствие смещения одной ее части относительно другой. Сдвиг по данной площадке вызывается касательным напряжением к ней. Сопротивление сдвигу зависит от величины вертикальной нагрузки, приложенной к образцу. Прочность пород оценивается в основном по теории Мора, согласно которой разрушение тела происходит при определенном предельном соотношении нормальных и касательных напряжений.

Определение прочностных и деформационных характеристик выполняются как в лабораторных, так и в полевых условиях, при простом и сложном напряжённом состояниях. Основными видами испытаний являются: одноосное сжатие; разрыв; сдвиг; кручение; компрессия; осесимметричное трёхосное сжатие вертикальной и радиальной нагрузкой; осесимметричное трёхосное сжатие с кручением; осесимметричное сжатие полого цилиндра с кручением; трёхосное сжатие с независимым заданием всех трёх главных направлений; динамометрическое испытание в релаксационно-ползучем режиме.

21. Реол. св-ва грунтов. При инженерно-геологической оценке пород эти свойства имеют весьма важное значение. Однако роль каждого из них при этом неодинакова, что зависит от состава пород.1) Водоустойчивость . Определение водоустойчивости наиболее важно при оценке глинистых пород, которые под воздействием воды теряют связность и изменяют консистенцию или размокают и распадаются. Скорость и характер размокания характеризуют водоустойчивость.Некоторые разности глинистых пород при увлажнении сильно набухают, причем объем их увеличивается на 25-30%. Изменение свойств глинистых пород происходит не только при увлажнении. Высыхание влажных глинистых пород иногда сопровождается их растрескиванием, изменением монолитности, уменьшением объема (усадкой). Вода, воздействуя на породы, может также растворять, выщелачивать водорастворимые части и тем самым изменять их свойства. 2) Влагоемкость . Под влагоемкостью породы понимается ее способность в вмещать и удерживать определенное количество воды. В соответствии с этим различают породы: влагоемкие (глины, суглинки), среденевлагоемкие (скпеси, пески м/з,с/з, пылеватые) и невлагоемкие (пески с/з, к/з, гравий и т.д.). Применительно к породам невлагоемким следует говорить об их водоемкости. У влагоемких пород различают полную, капиллярную и молекулярную Влагоемкость. Полной влагоемкости полное насыщение породы водой, т.е. заполнение всех ее пор. Сравнивая естественную влажность породы с влажностью, соответствующей полной влагоемкости судят о степени ее водонасыщения. Капиллярной влагоемкости соответствует не полное насыщение породы водой, а такое, когда водой заполнены только капиллярные поры. Под молекулярной влагоемкостью понимается способность пород удерживать определенное количество физически связанной воды. Максимальное количество физически связанной воды, которое может удержать порода на поверхности своих частиц называется максимальной молекулярной влагоемкостью. Из песчаных пород насыщенных водой не вся вода может вытекать свободно, а только та часть, которая подчиняется силе тяжести. Способность песчаных и других обломочных пород, насыщенных водой, отдавать ее путем свободного стекания, характеризует их водоотдачу. Такой способностью обладают невлагоемкие породы. Водоотдача пород примерно равна разности между полной их влагоемкостью (W п) и максимальной молекулярной: W отд =W п -W м Характеристика водоотдачи пород имеет важное значение при решении многих практических вопросов, например при проектировании дренажей, притоков воды в котлован и т.д. 3) Капиллярность . При значительном повышении влажности песчаных и особенно глинистых пород понижаются их строительные качества. Увлажнение воды может быть обусловлено инфильтрацией воды с поверхности земли или поступлением ее снизу из какого-либо водоносного горизонта под влиянием напора капиллярных сил. Капиллярные силы образуют капиллярную зону над уровнем грунтовых вод, в пределах которой наблюдается повышенное увлажнение или насыщение пород. При интенсивном испарении капиллярных вод происходит засоление почв, образование солончаков. Известно, что максимальная высота капиллярного поднятия в т/з и м/з песках может достигать 1,5-2,0 м, в глинистых породах 3-4 м. В грубозернистых породах она мала и практического значения не имеет. 4) Водопроницаемость . К числу основных водных свойств пород относится водопроницаемость, т.е. способность пропускать через себя воду под действием напора. Данные, характеризующие водопроницаемость рыхлых обломочных и глинистых пород, имеет широкое применение в практике для определения притоков в строительные котлованы, подземные выработки, способов осушения и т.д. Водопроницаемость песков, галечников и др. рыхлых отложений зависит от их пористости и скважности. Глинистые породы при небольших напорах очень слабопроницаемы, т.к. размер пор в них мал. Движение воды и других жидкостей через пористые среды (породы) называется фильтрацией. Следовательно, водопроницаемость песчаных и глинистых пород – это их фильтрационная способность. Мерой водопроводимости горных пород служит коэффициент фильтрации. В инженерно-геологической практике пользуются главным образом скоростным выражением коэффициента фильтрации, исходя из уравнения v=K ф I (k) . Если I=1, то v=K ф м/сут, см/сут.

В глинистых породах эффективная пористость всегда значительно меньше общей пористости и часто равна нулю, т.к. поровое пространство в значительной мере занято физически связной водой.

22. Релаксация. При нагружении постоянной силой F возникают деформации,

развивающиеся во времени. Для прекращения развития этих деформаций необходимо уменьшать силу по некоторому закону F(t).Уменьшение во времени напряжения, необходимого для поддержания постоянной деформации называется релаксацией(расслаблением) напряжений. С позиции статистической физики релаксацию можно рассматривать как процесс установления статистического равновесия в физической системе, когда микроскопические величины, характеризующие состояние системы (напряжения), асимптотически приближаются к своим равновесным значениям. Характеристикой явления расслабления напряжений является время релаксации , равное времени за которое напряжение уменьшается в e раз, которое характеризует продолжительность «осёдлой жизни» молекул, т. е. определяет подвижность материала. Время релаксации различно у разных тел. Для скальных грунтов время релаксации изменяется сотнями и тысячами лет, ДЛЯ стекла - ОКОЛО ста лет, а для воды - 10-11 с. Например, горные породы, формирующие земную кору, обладают временем релаксации измерямым тысячелетиями, у воздуха 10-10, у воды 10-11, у льда сотни секунд. Если продолжительность действия сил на грунт меньше периода релаксации, то будут развиваться в основном упругие деформации.

Таким образом, в пределах 100-1000 секунд лёд ведёт себя как упругое тело (например, хрупко разрушается при ударе в условия большой нагрузки). При уменьшении нагрузки лёд течёт как вязкая жидкость. Аналогичное поведение - хрупкое разрушение при быстром приложении нагрузки и вязкое течение при длительном воздействии нагрузки–отчётливо проявляется у мёрзлых грунтов.

Если же время действия силы на грунт превышает время релаксации, то в грунте возникают необратимые деформации ползучести и течения. Иными словами, в зависимости от отношения времени действия силы ко времени релаксации тело будет вести себя как твердое или как жидкое. Период релаксации является" основной константой, объединяющей свойства твердых и жидких тел. Величина времени релаксации может быть определена из отношения вязкости г| к модулю упругости (сдвига): Для твердообразных тел, к которым относятся дисперсные и скальные грунты, характерно наличие предельного напряжения сдвига Хк, называемого пределом текучести и совпадающего с пределом упругости.

23-24. Основные физико-химические свойства грунтов . К этим свойствам относятся свойства, которые проявляются в результате физико – химического взаимодействия между компонентами грунтов. К ним относятся коррозионные свойства грунтов, диффузионные, осмотические, адсорбционные, а также липкость, пластичность, набухание, размокание, усадка и другие свойства пород. Коррозионные свойства: коррозией называется процесс разрушения материалов в следствие их химических, электро – химических или био – химических взаимодействий с окружающей средой. Подземная коррозия выражается в разрушении строительных металлических материалов, сооружений и трубопроводов при их взаимодействии с грунтами. Основными причинами подземной коррозии являются: 1) воздействие грунтовой влаги на металлическую конструкцию; 2) явление электролиза. Эти явления возникают вокруг трубопровода, а также на участках, где используют трамвайное и железно – дорожное движение. Подобное разрушение возникает в грунтах, в результате воздействия блуждающих электрических токов на воду – солевой раствор в порах грунта, который в следствии такого взаимодействия станет агрессивным электролитом CISO4; 3) действия находящихся в грунтах микроорганизмов, вызывающие биокоррозию. В целом коррозия грунтов зависит от многих факторов. К основным относятся химический состав грунтов и в первую очередь состав и количество растворенных солей, а также влажность грунтов, содержание в них газов, структуры грунтов, их электропроводность и наличие бактерий. Диффузия (от лат. Diffusion - распространение, растекание, рассеивание), движение частиц среды, приводящее к переносу вещества и выравниванию концентраций или к установлению равновесного распределения концентраций частиц данного сорта в среде. Осмос (от греч. Osmos – толчок, давление), односторонний перенос растворителя через полупроницаемую перегородку (мембрану), отделяющую раствор от чистого растворителя или раствора меньшей концентрации. Диффузия и осмос ведет к перераспределению ионов вещества и молекул воды и наиболее вещественно проявляются в глинистых грунтах. Осмос в глинах может может вызвать деформации набухания или усадки. Например, если поместить засоленный глинистый грунт в пресную воду, то произойдет осмотическое всасывание воды и как результат набухание грунта. На практике такое набухание может происходить в различных каналах, проложенных в засоленных грунтах после их затопления пресной водой. Если будет иметь место обратное соотношение концентраций, то есть раствор в грунтах будет более пресный, чем в канале, то произойдет осмотический отсос воды из грунтов в результате их усадки. Адсорбция грунтов называется их способность поглощать из проходящих растворов определенные частицы или элементы вещества. Существуют несколько видов адсорбций: механическая (задерживание частицы за счет конфигурации пор); физическая (за счет молекул взаимодействующих между частицами из раствора и поверхностных пор); химическая (за счет химических взаимодействий); биологическая (за счет действия растений и различных микроорганизмов). Отдельные виды адсорбции могут проявляться совместно (физико – химическая адсорбция).

25. Усадка грунта . Усадкой грунта называется уменьшение его объема в результате удаления воды при высыхании или под влиянием физико-химических процессов (осмос и др.). В результате усадки грунт становится плотнее и после высыхания - даже твердым. Уплотнение глинистого грунта при усадке увеличивает его сопротивление деформациям, но наличие трещин, обычно сопровождающих усадку, повышает водопроницаемость и уменьшает устойчивость поверхностного слоя грунта в откосах. В условиях сухого и жаркого климата усадочные трещины разбивают массив глинистого грунта на глубину до 7-8 м и больше.В максимальной степени усадка проявляется в глинах; другим связным породам она свойственна меньше.

Липкость грунта проявляется при влажности, большей, чем Wm; наибольшего значения она достигает у глинистых грунтов. Липкость глин растет с увеличением внешнего давления и уменьшением влажности, ее максимальное значение в большинстве случаев достигается при максимальной молекулярной влагоемкости. Липкость грунта зависит от категорий воды, содержащейся в грунте, особенностей его химико-минеральной части, площади контакта грунта с предметом и др. Величина липкости глинистых грунтов при определенном соотношении их особенностей с внешними факторами может достигать 0,02-0,05 МПа. Поэтому липкость грунта является одним из факторов, определяющих условия работы ковшов, дорожных и почвообрабатывающих машин. Прилипание грунта к поверхности землеройных и транспортных машин и механизмов вызывает снижение их производительности при выполнении вскрышных работ на карьерах, при разработке котлованов и т.д.

Водопрочность - это способность грунтов сохранять механическую прочность и устойчивость при взаимодействии с водой. Взаимодействие пород с водой может быть статическим и динамическим: воздействие спокойной воды вызывает явления набухания и размокания, гидродинамическое воздействие - процесс размыва.

Размокаемость - это способность глинистых пород при впитывании воды терять связность и превращаться в рыхлую массу с частичной или полной потерей несущей способности. Интенсивность процесса размокания зависит от характера структурных связей, состава и состояния грунтов. Скорость и интенсивность размыва зависят как от характера водного воздействия, так и от реакции породы на данное воздействие - размываемости. Резкое изменение водопрочности (например, в результате выветривания) может привести к значительному снижению несущей способности грунтов оснований сооружений и к возникновению обвальных и оползневых явлений в бортах строительных котлованов и глубоких карьеров.

Размываемость чаще всего оценивается коэффициентом сопротивляемости горных пород размыву.

Пластичностью грунтов называется способность их изменять свою форму (деформироваться) без разрыва сплошности в результате внешнего воздействия и сохранять полученную при деформации новую форму после того, как внешнее воздействие прекращается. Пластичные свойства грунтов тесно связаны с влажностью и изменяются в зависимости от количества и качества находящейся в грунте воды. Переход глинистой породы из одной формы консистенции в другую совершается при определенных значениях влажности, которые получили название характерных влажностей или пределов. В инженерно-геологической практике наибольшее распространение получили верхний и нижний пределы пластичности. Пределы пластичности и число пластичности широко используются при классификации глинистых грунтов, определении расчетных сопротивлений грунтов и приблизительной оценке устойчивости грунтов в котлованах, выемках и т. д.

Набуханием грунта называется увеличение его объема при взаимодействии с водой. Набухание грунтов часто наблюдается при проходке котлованов и выемок и приводит к деформации крепи, полотна дорог, фундаментов и пр. Для определения набухания предложено несколько способов, которые могут быть объединены в пять групп, основанных на оценке набухания: 1) по теплоте набухания; 2) по давлению набухания; 3) по объему осадка, седиментированного в жид кости; 4) по количеству (объему или весу) воды, вызвавшей набухание; 5) по приросту объема грунта при набухании.

Наибольшее распространение в практике инженерно-геологических работ получил способ изучения набухания по приросту объема грунта в процессе насыщения его водой (в том виде, как он разработан А. М. Васильевым).

26. Движение воды и других жидкостей через пористые среды (породы) называется фильтрацией . Следовательно, водопроницаемость песчаных и глинистых пород – это их фильтрационная способность. Мерой водопроводимости горных пород служит коэффициент фильтрации. В инженерно-геологической практике пользуются главным образом скоростным выражением коэффициента фильтрации, исходя из уравнения v=K ф I (k) . Если I=1, то v=K ф м/сут, см/сут. Скорость движения воды через пористые среды (горные породы) прямо пропорциональна гидравлическому градиенту, т.е. отношению действующего напора к длине пути фильтрации. Это важнейший закон водопроницаемости песчаных и глинистых пород – закон ламинарной фильтрации.

Скорость движения воды определяется также уравнением: v=Q/F (Q – количество фильтрующейся через породу воды, м 3 ; F – площадь поперечного сечения, м 2 , через которое фильтруется вода). Так как движение воды происходит только по порам, то действительная скорость фильтрации (исходя меньшей площади действительного сечения породы) больше. Действительный коэффициент фильтрации: K фд =K ф /n (n – пористость). Действительный коэфф-нт фильтр-и иногда называется коэф-том скорости фильтрации. В песчаных породах К фд всегда больше коэффициента фильтрации, опред-го непосредственно в лаб-ых усл-ях. В глинистых породах эффективная пористость всегда значительно меньше общей пористости и часто равна нулю, т.к. поровое пространство в значительной мере занято физически связной водой. В строительстве фильтрационные свойства грунта (его водопроницаемость) связаны: 1. С инженерными задачами (фильтрация берегов в результате строительства плотин). 2. С вопросами временного понижения уровня грунтовых вод (У.Г.В.) для осушения котлованов. Лабораторный прибор для определения фильтрационных свойств грунтов представляет собой сосуд с пористым днищем (см. схему), в который помещается песок. Сверху заливается вода и измеряется ее расход (фильтрация через образец песка) с различными интервалами времени. Если в глинистом грунте создается гидравлический градиент меньше начальной величины, фильтрации в грунте нет и такой грунт является водоупором. Фил-ные хар-ки грунтов используются при: 1.Расчёте дренажа. 2.Определении дебита источника подземного водоснабжения. 3.Расчёте осадок сооружений (оснований) во времени. 4.Искусственном понижение У.Г.В. 5.Расчёте шпунтового ограждения при откопке котлованов, траншей.

Отметим ряд особенностей, хар-х для вечномерзлых грунтов после их оттаивания:

Максимальные значения водопроницаемости отмечены в зонах тектонического дробления, причем затухания с глубиной не наблюдается, что объясняется большим содержанием льда, вызванного распучиванием дисперсного заполнителя. После вытаивания льда образуются мощные фильтрационные ходы.

Водопрониц-ть вечномерзлых грунтов после их оттаивания обычно переменна во времени, поскольку находится под воздействием двух противоборств-х факторов. С одн стороны, пустоты, только что образовавшиеся в распученном массиве после вытаивания льда, стремятся к закрытию под действием веса вышележащих грунтов или нагрузок от сооружений, вследствие чего водопрон-ть должна уменьшаться. С другой стороны, тонкодисперсный заполнитель, который после вытаивания льда не обладает структурой, обеспеч-й его фильтр-ю прочность, способен размываться фил-ным потоком. Это влечет за собой увеличение водопр-сти пород. Фильтр-ю способность вечномерзлых пород оценивают по рез-там опытных работ на предварительно оттаянных участках или косвенными методами. К косв-м методам оценки водопр-сти вечномерзлых грунтов относятся: расчетные; сравнения зависимостей показателей водопрон-сти от трещиноватости для талых и мерзлых грунтов; воздушного опробования скважин; геофизические. Все эти методы носят оценочный характер.

СП 22.13330.2011
Актуализированная редакция СНиП 2.02.04-88
Автор НИИОСП им.Н.М.Герсеванова

Глава 5.3. п.:

  1. Основными параметрами механических свойств грунтов, определяющими несущую способность оснований и их деформации, являются прочностные и деформационные характеристики грунтов (угол внутреннего трения φ, удельное сцепление c , предел прочности на одноосное сжатие скальных грунтов R c , модуль деформации E и коэффициент поперечной деформации υ грунтов). Допускается применять другие параметры, характеризующие взаимодействие фундаментов с грунтом основания и установленные опытным путем (удельные силы пучения при промерзании, коэффициенты жесткости основания и пр.).
    Примечание - Далее, за исключением специально оговоренных случаев, под термином "характеристики грунтов" понимают не только механические, но и физические характеристики грунтов, а также упомянутые в настоящем пункте параметры.

СП 50-101-2004 "Проектирование и устройство оснований
и фундаментов зданий и сооружений"
Автор НИИОСП им. Н.М.Герсеванова, ГУП Мосгипронисельстрой

п.5.1.8
В состав физико-механических характеристик грунтов входят:

  • - плотность грунта и его частиц и влажность (ГОСТ 5180 и ГОСТ 30416);
  • - коэффициент пористости;
  • - гранулометрический состав для крупнообломочных грунтов и песков (ГОСТ 12536);
  • - влажность на границах пластичности и текучести, число пластичности и показатель текучести для глинистых грунтов (ГОСТ 5180);
  • - угол внутреннего трения, удельное сцепление и модуль деформации грунтов (ГОСТ 12248, ГОСТ 20276, ГОСТ 30416 и ГОСТ 30672);

    См. Нормативные значения этих характеристик - Приложение А СП 22.13330.2016

  • - временное сопротивление при одноосном сжатии, показатели размягчаемости и растворимости для скальных грунтов (ГОСТ 12248).
Для специфических грунтов, особенности проектирования оснований которых изложены в разделе 6, и при проектировании подземных сооружений (раздел 9) дополнительно должны быть определены характеристики, указанные в этих разделах. По специальному заданию дополнительно могут быть определены и другие необходимые для расчетов характеристики грунтов (например, реологические).
К физические характеристики грунтов относятся:
Для специфических грунтов, особенности проектирования оснований которых изложены в разделе 6 СП 22.13330.2011, и при проектировании оснований подземных частей сооружений (см. раздел 9) дополнительно должны быть определены характеристики, указанные в этих разделах.
К грунтам со специфическими неблагоприятными свойствами относятся:
    Просадочные грунты
    Набухающие грунты
    Засоленные грунты
    Органоминеральные и органические грунты
    Элювиальные грунты
    Насыпные грунты
    Намывные грунты
    Пучинистые грунты
    Закрепленные грунты
Определение свойств пучинистых грунтов см. на станице сайта "Пучинистые грунты Особенности проектирования "

При определении расчетного сопротивления грунта R оснований деревянных домов, относящихся к 3 пониженному классу ответственности , по табличным значениям R 0 (В.1-В.10 приложения В) не требуется определения таких физико-механических характеристик, как:

Угол внутреннего трения, удельное сцепление, модуль деформации и коэффициент поперечной деформации грунтов (ГОСТ 12248 , ГОСТ 20276 , ГОСТ 30416 и ГОСТ 30672);

См. пример определения свойств грунтов для замены фундамента на странице сайте: "Пример расчета основания деревянного дома "

Определения

Приложение А. п.:

  1. Коэффициент пористости e определяется по формуле (См. А.6 ГОСТ 25100-2011)

    e = (ρ s - ρ d)/ρ d , (А.5)

      ρ s -плотность частиц (скелета) грунта, масса единицы объема твердых (скелетных) частиц грунта г/см3;
      ρ d - плотность сухого грунта, отношение массы грунта за вычетом массы воды и льда в его порах к его первоначальному объему, г/см3, определяемая по формуле
  1. Плотность сухого грунта (скелета) ρ d определяют по формуле (см. А.16 ГОСТ 25100.2011)

    ρ d = ρ/(1+w ), (А.8)

      где ρ - плотность грунта, г/см 3 (см. ГОСТ 5180);
      w - естественная влажность грунта, %
  1. Показатель текучести I L - отношение разности влажностей, соответствующих двум состояниям грунта: естественному W и на границе раскатывания Wp, к числу пластичности Ip
    А.18 ГОСТ 25100-2011 , Показатель текучести I L д.е., - показатель состояния (консистенции) глинистых грунтов; определяют по формуле

    I L = (w - w p)/I p , (A.9)

      где w - естественная влажность грунта, % (см. ГОСТ-5180-84);
      w p - влажность на границе раскатывания, % (см. ГОСТ 5180);
      I p - число пластичности, %, (см. А.31 ГОСТ 25100-2011)
  1. Число пластичности I p (См. А.31 ГОСТ 25100-2011), %; определяют по формуле

    I p = w L - w p , (A.17)

      где w L - влажность на границе текучести, % (см. 4 ГОСТ 5180);
      w p - влажность на границе раскатывания, % (см. 5 ГОСТ 5180)

Сжимаемость - способность грунта уменьшаться в объеме под действием внешней силы, характеризуется коэффициентом сжимаемости m 0 (тангенсом угла наклона компрессионной кривой), определяемого по формуле (См. 5.4 ГОСТ 12248-2010)

m 0 = (e i - e i+1)/ (p i+1 - p i) 5.32

    e i и e i+1 - коэффициенты пористости, соответствующие давлениям p i и p i+1 .
Глава 5.1.6. п.:
  1. По измеренным в процессе испытания значениям горизонтальной срезающей и нормальной нагрузок вычисляют касательные и нормальные напряжения τ и σ, МПа, по формулам:

    τ = 10Q / A; (5.3)
    σ = 10F / A; (5.4)


  2. Удельное сцепление c и угол внутреннего трения φ грунта определяются как параметры линейной зависимости

    τ = σ tg(φ) + c (5.5)

      τ и φ определяются по формулам (5.3) и (5.4) = Q/A, (5.1) - касательные напряжения и
      = F/A, (5.2) - нормальные напряжения
      Q и F -соответственно касательная и нормальная сила к плоскости среза, кН
      A - пллощадь среза, см2
Модуль деформации по данным компрессионных испытаний E k - коэф. пропорциональности между давлением и относительной линейное общей деформацией грунта, возникающей под этим давлением, характеризующий остаточные и упругие деформации песков мелких и пылеватых, глинистых грунтов, органо-минеральных и органических грунтов, (См. 5.4 ГОСТ 12248-2010)

Источник: ГОСТ 12248-2010 плотность грунта ρ - отношение массы грунта включая массу воды в его порах к занимаемому этим грунтом объему (г/см 3 т/м 3)
плотность сухого грунта ρ d - отношение массы сухого грунта (исключая массу воды в его порах) к занимаемому этим грунтом объему (г/см 3 т/м 3)
плотность частиц грунта ρ s - отношение массы сухого грунта (исключая массу воды в его порах) к объему твердой части этого грунта (г/см 3 т/м 3). Полная влагоёмкость Wo – максимально возможное содержание в грунте всех возможных видов воды при полном заполнении его пор.

w sat = n.ρ w / ρ d

    где: n – пористость, д.е.,
    ρ w – плотность воды, г/см3,
    ρ d – плотность сухого грунта .
В табл. 9 приведены ориентировочные значения плотностей частиц грунтов ρ s не содержащих водорастворимых солей и органических веществ

Основными характеристиками сжимаемости грунтов являются модуль общей деформации Е или коэффициент относительной сжимаемости , коэффициент поперечного расширения (коэффициент Пуассона) и коэффициент бокового давления .

1. Коэффициент относительной сжимаемости . При расчете осадок часто используется коэффициент относительной сжимаемости , который определяется по формуле:

Выразим выражение из формул и . Приравниваем правые части этих выражений, решаем их относительно m v , получим:

Или m v *p i =s i /h

Т.о. коэффициент относительной сжимаемости равен относительной осадкеs i /h , приходящейся на единицу действующего давления.

2. Модуль общей деформации Е является коэффициентом пропорциональности между напряжениями и относительными деформациями. Определяется он в полевых и лабораторных условиях. Наиболее распространенный способ – проведение компрессионных испытаний с последующей их обработкой. В этом случае модуль общей деформации будет равен:

;

где β – коэффициент, учитывающий невозможность бокового расширения грунта (для песков и супесей β = 0,76, суглинков β = 0,63, глин β = 0,42.

При испытании грунта диаметром d штампом по результатам лабораторных испытаний, Е определяется расчетом по формуле

Е=(1-ν 2)*w*d*∆p/∆S

3. Коэффициент бокового давления ξ рассматривается как отношение приращения бокового давления (или ) к приращению действующего вертикального давления при обязательном отсутствии боковых деформаций :

По экспериментальным данным значения коэффициентов бокового давления изменяются в следующих пределах: для песчаных грунтов ξ = 0,25-0,37, глинистых ξ = 0,11-0,82. Величина ξ определяется в приборах трехосного сжатия.

4. Коэффициент поперечного расширения ν грунта (коэффициент Пуассона) равен отношению относительных горизонтальных деформаций образца ε х к относительным вертикальным ε z , т.е..

Понравилась статья? Поделитесь ей
Наверх