Случайная величина е имеет распределение вероятностей. Нормальное распределение

9. Математическое ожидание и дисперсия непрерывных случайных величин

Пусть непрерывная случайная величина X задана плотностью распределения f (x ) .

Определение9.1: Математическим ожиданием непрерывной случайной величины X , [ a , b ]

Ox , то

Замечание: Предполагается, что несобственный интеграл сходится абсолютно, то есть существует интеграл

Определение9.2: Дисперсией непрерывной случайной величины X , возможные значения которой принадлежат отрезку [ a , b ] , называют определенный интеграл

Если возможные значения принадлежат всей оси Ox , то

Так как D (X ) = M (X 2 ) – [ M (X )] 2 , то можно использовать следующие формулы для вычисления дисперсии:

или
.

Замечание: Свойства математического ожидания и дисперсии дискретных случайных величин сохраняются и для непрерывных величин.

Среднее квадратическое отклонение непрерывной случайной величины определяется аналогично дискретному случаю:

.

10. Типовые распределения непрерывных случайных величин

10.1. Равномерное распределение

Определение10.1: Распределение вероятностей называют равномерным , если на интервале, которому принадлежат все возможные значения случайной величины, плотность распределения сохраняет постоянное значение.

Пример. Шкала измерительного прибора проградуирована в некоторых единицах. Ошибку при округлении отсчета до ближайшего целого деления можно рассматривать как случайную величину X , которая может принимать с постоянной плотностью вероятности любое значение между двумя соседними целыми делениями. Таким образом, X имеет равномерное распределение.

Найдем плотность равномерного распределения f (x ) :

По условию, X не принимает значений вне интервала (a , b ), поэтому f (x )=0 при x a и x > b .

Найдем постоянную C из условия, что
. Тогда
.

Отсюда
.

Итак, искомая плотность вероятности равномерного распределения имеет вид:

Функция распределения вероятностей равномерной случайной величины имеет вид:

Для случайной величины Х , равномерно распределенной в интервале (a , b ), вероятность попадания в любой интервал (x 1 , x 2 ), лежащий внутри интервала (a , b ), равна:
, то есть зависит от длины интервала, а не от того, где он расположен.

График плотности равномерного распределения имеет вид:

Функция распределения равномерной случайной величины имеет вид:

Пример: Найдем математическое ожидание, дисперсию и среднее квадратическое отклонение непрерывной случайной величины X , распределенной равномерно в интервале (a , b ).

Решение: Учитывая плотность равномерного распределения, получаем:

Окончательно, получим, что

.

Среднее квадратическое отклонение
.

Замечание: Например, если X – случайная величина, распределенная равномерно на интервале (0,1) , то
,
,
.

10.2. Нормальное (Гауссовское) распределение

Определение10.2: Нормальным называют распределение вероятностей непрерывной случайной величины, которое описывается следующей плотностью вероятностей:

, где
.

График функции f (x ) имеет следующий вид:

График плотности нормального распределения называют нормальной кривой или кривой Гаусса .

Нормальное распределение определяется двумя параметрами: и
. Вероятностный смысл этих параметров таков: есть математическое ожидание, - среднее квадратическое отклонение нормального распределения, то есть
и
.

График функции распределения нормальной случайной величины имеет следующий вид:

Замечание: Стандартным нормальным или нормированным называют нормальное распределение с параметрами
и
. Например, если X – нормальная величина с параметрами и , то
- стандартная нормальная величина, причем
и
. Плотность стандартного нормального распределения имеет вид

.

Данная функция табулирована (см. приложение 1).

Функция распределения
нормального распределения имеет вид:

.

Функция распределения стандартного нормального распределения имеет вид:

.

Замечание:
.

Замечание: Вероятность попадания стандартной нормальной величины X в интервал (0 , x ) можно найти, пользуясь функцией Лапласа
:

,

и
.

Функция
табулирована (см. приложение 2).

Влияние параметров нормального распределения на форму нормальной кривой

Изменение величины параметра (математического ожидания) не изменяет формы нормальной кривой, а приводит лишь к ее сдвигу вдоль оси Ox : вправо, если возрастает, и влево, если убывает:

Максимум функции плотности вероятностей нормального распределения равен
.

Отсюда следует, что с возрастанием максимальная ордината нормальной кривой убывает, а сама кривая становится более пологой, то есть сжимается к оси Ox ; при убывании нормальная кривая становится более “островершинной” и растягивается в положительном направлении оси Oy :

Замечание: При любых значениях параметров и площадь, ограниченная нормальной кривой и осью Ox , остается равной единице.

Вероятность попадания в заданный интервал нормальной случайной величины

Пусть случайная величина X распределена по нормальному закону. Тогда вероятность того, что X примет значение, принадлежащее интервалу
, равна

Введем новую переменную
Отсюда,
,
Найдем новые пределы интегрирования. Если
то
; если то

Таким образом, имеем

Пользуясь функцией Лапласа , получим

Пример. Случайная величина X распределена по нормальному закону с
и
. Найти вероятность того, что случайная величина X примет значение, принадлежащее интервалу .

Решение:

По таблице приложения 2 находим
Отсюда искомая вероятность

Пример. Найти математическое ожидание случайной величины X , которая распределена по нормальному закону.

Решение: По определению математического ожидания непрерывной случайной величины,

.

Введем новую переменную Отсюда, ,. Приняв во внимание, что новые пределы интегрирования равны старым, получим

Первое из слагаемых равно нулю (под знаком интеграла нечетная функция; пределы интегрирования симметричны относительно начала координат). Второе из слагаемых равно а (интеграл Пуассона
).

Замечание: При вычислении дисперсии нормальной случайной величины делается такая же замена переменных и применяется формула интегрирования по частям.

Правило трех сигм

Вычислим вероятность того, что отклонение нормально распределенной случайной величины X по абсолютной величине меньше утроенного среднего квадратического отклонения:

Таким образом, сущность правила трех сигм состоит в следующем: если случайная величина распределена нормально, то абсолютная величина ее отклонения от математического ожидания не превосходит утроенного среднего квадратического отклонения:

На практике правило трех сигм применяют следующим образом: если распределение изучаемой случайной величины неизвестно, но условие, указанное в приведенном правиле, выполняется, То есть основание предполагать, что изучаемая величина распределена нормально; в противном случае она не распределена нормально.

10.3. Показательное распределение

Определение10.3: Показательным (экспоненциальным) называют распределение вероятностей непрерывной случайной величины X , которое описывается плотностью

где - постоянная положительная величина.

График функции f (x ) имеет следующий вид:

Например, время Т безотказной работы компьютерной системы есть случайная величина, имеющая показательное распределение с параметром λ , физический смысл которого – среднее число отказов в единицу времени. Интервал между последовательными поступлениями вызовов на автоматическую телефонную станцию, интервал между последовательными поступлениями автомобилей к стоп-линии перекрестка – это примеры показательных случайных величин.

Найдем функцию распределения показательного закона:

.

График функции показательного распределения имеет следующий вид:

Пример. Написать плотность и функцию распределения показательного закона, если параметр

Решение. Очевидно,искомая плотность распределения

при
;
при
.

Искомая функция распределения

при ;
при .

Вероятность попадания в заданный интервал показательно распределенной случайной величины

Найдем вероятность попадания в интервал (a , b ) непрерывной случайной величины X , которая распределена по показательному закону, заданному функцией распределения

.

Используя формулу и учитывая, что

получим

Значения функции
находят по таблице (приложение 4).

Пример: Непрерывная случайная величина X распределена по показательному закону

при ; при
. Найти вероятность того, что в результате испытания X попадет в интервал (0,3;1) .

Решение. По условию,
. ТогдаX

Замечание: Допустим, имеются основания предположить, что изучаемая на практике случайная величина имеет показательное распределение. Для того, чтобы проверить эту гипотезу, находят оценки математического ожидания и среднего квадратического отклонения, т.е. находят выборочную среднюю и выборочное среднее квадратическое отклонение. Математическое ожидание и среднее квадратическое отклонение показательного распределения равны между собой, поэтому их оценки должны различаться незначительно. Если оценки окажутся близкими одна к другой, то данные наблюдений подтверждают гипотезу о показательном распределении изучаемой величины, если же оценки различаются существенно, то гипотезу следует отвергнуть.

Примерами случайных величин, распределённых по нормальному закону, являются рост человека, масса вылавливаемой рыбы одного вида . Нормальность распределения означает следующее : существуют значения роста человека, массы рыбы одного вида, которые на интуитивном уровне воспринимаются как "нормальные" (а по сути - усреднённые), и они-то в достаточно большой выборке встречаются гораздо чаще, чем отличающиеся в бОльшую или меньшую сторону.

Нормальное распределение вероятностей непрерывной случайной величины (иногда - распределение Гаусса) можно назвать колоколообразным из-за того, что симметричная относительно среднего функция плотности этого распределения очень похожа на разрез колокола (красная кривая на рисунке выше).

Вероятность встретить в выборке те или иные значение равна площади фигуры под кривой и в случае нормального распределения мы видим, что под верхом "колокола", которому соответствуют значения, стремящиеся к среднему, площадь, а значит, вероятность, больше, чем под краями. Таким образом, получаем то же, что уже сказано: вероятность встретить человека "нормального" роста, поймать рыбу "нормальной" массы выше, чем для значений, отличающихся в бОльшую или меньшую сторону. В очень многих случаях практики ошибки измерения распределяются по закону, близкому к нормальному.

Остановимся ещё раз на рисунке в начале урока, на котором представлена функция плотности нормального распределения. График этой функции получен при рассчёте некоторой выборки данных в пакете программных средств STATISTICA . На ней столбцы гистограммы представляют собой интервалы значений выборки, распределение которых близко (или, как принято говорить в статистике, незначимо отличаются от) к собственно графику функции плотности нормального распределения, который представляет собой кривую красного цвета. На графике видно, что эта кривая действительно колоколообразная.

Нормальное распределение во многом ценно благодаря тому, что зная только математическое ожидание непрерывной случайной величины и стандартное отклонение, можно вычислить любую вероятность, связанную с этой величиной.

Нормальное распределение имеет ещё и то преимущество, что один из наиболее простых в использовании статистических критериев, используемых для проверки статистических гипотез - критерий Стьюдента - может быть использован только в том случае, когда данные выборки подчиняются нормальному закону распределения.

Функцию плотности нормального распределения непрерывной случайной величины можно найти по формуле:

,

где x - значение изменяющейся величины, - среднее значение, - стандартное отклонение, e =2,71828... - основание натурального логарифма, =3,1416...

Свойства функции плотности нормального распределения

Изменения среднего значения перемещают кривую функции плотности нормального распределения в направлении оси Ox . Если возрастает, кривая перемещается вправо, если уменьшается, то влево.

Если меняется стандартное отклонение, то меняется высота вершины кривой. При увеличении стандартного отклонения вершина кривой находится выше, при уменьшении - ниже.

Вероятность попадания значения нормально распределённой случайной величины в заданный интервал

Уже в этом параграфе начнём решать практические задачи, смысл которых обозначен в заголовке. Разберём, какие возможности для решения задач предоставляет теория. Отправное понятие для вычисления вероятности попадания нормально распределённой случайной величины в заданный интервал - интегральная функция нормального распределения.

Интегральная функция нормального распределения :

.

Однако проблематично получить таблицы для каждой возможной комбинации среднего и стандартного отклонения. Поэтому одним из простых способов вычисления вероятности попадания нормально распределённой случайной величины в заданный интервал является использование таблиц вероятностей для стандартизированного нормального распределения.

Стандартизованным или нормированным называется нормальное распределение , среднее значение которого , а стандартное отклонение .

Функция плотности стандартизованного нормального распределения :

.

Интегральная функция стандартизованного нормального распределения :

.

На рисунке ниже представлена интегральная функция стандартизованного нормального распределения, график которой получен при рассчёте некоторой выборки данных в пакете программных средств STATISTICA . Собственно график представляет собой кривую красного цвета, а значения выборки приближаются к нему.


Для увеличения рисунка можно щёлкнуть по нему левой кнопкой мыши.

Стандартизация случайной величины означает переход от первоначальных единиц, используемых в задании, к стандартизованным единицам. Стандартизация выполняется по формуле

На практике все возможные значения случайной величины часто не известны, поэтому значения среднего и стандартного отклонения точно определить нельзя. Их заменяют средним арифметическим наблюдений и стандартным отклонением s . Величина z выражает отклонения значений случайной величины от среднего арифметического при измерении стандартных отклонений.

Открытый интервал

Таблица вероятностей для стандартизированного нормального распределения, которая есть практически в любой книге по статистике, содержит вероятности того, что имеющая стандартное нормальное распределение случайная величина Z примет значение меньше некоторого числа z . То есть попадёт в открытый интервал от минус бесконечности до z . Например, вероятность того, что величина Z меньше 1,5, равна 0,93319.

Пример 1. Предприятие производит детали, срок службы которых нормально распределён со средним значением 1000 и стандартным отклонением 200 часов.

Для случайно отобранной детали вычислить вероятность того, что её срок службы будет не менее 900 часов.

Решение. Введём первое обозначение:

Искомая вероятность.

Значения случайной величины находятся в открытом интервале. Но мы умеем вычислять вероятность того, что случайная величина примет значение, меньшее заданного, а по условию задачи требуется найти равное или большее заданного. Это другая часть пространства под кривой плотности нормального распределения (колокола). Поэтому, чтобы найти искомую вероятность, нужно из единицы вычесть упомянутую вероятность того, что случайная величина примет значение, меньше заданного 900:

Теперь случайную величину нужно стандартизировать.

Продолжаем вводить обозначения:

z = (X ≤ 900) ;

x = 900 - заданное значение случайной величины;

μ = 1000 - среднее значение;

σ = 200 - стандартное отклонение.

По этим данным условия задачи получаем:

.

По таблицам стандартизированной случайной величине (границе интервала) z = −0,5 соответствует вероятность 0,30854. Вычтем ее из единицы и получим то, что требуется в условии задачи:

Итак, вероятность того, что срок службы детали будет не менее 900 часов, составляет 69%.

Эту вероятность можно получить, используя функцию MS Excel НОРМ.РАСП (значение интегральной величины - 1):

P (X ≥900) = 1 - P (X ≤900) = 1 - НОРМ.РАСП(900; 1000; 200; 1) = 1 - 0,3085 = 0,6915.

О расчётах в MS Excel - в одном из последующих параграфах этого урока.

Пример 2. В некотором городе среднегодовой доход семьи является нормально распределённой случайной величиной со средним значением 300000 и стандартным отклонением 50000. Известно, что доходы 40 % семей меньше величины A . Найти величину A .

Решение. В этой задаче 40 % - ни что иное, как вероятность того, что случайная величина примет значение из открытого интервала, меньшее определённого значения, обозначенного буквой A .

Чтобы найти величину A , сначала составим интегральную функцию:

По условию задачи

μ = 300000 - среднее значение;

σ = 50000 - стандартное отклонение;

x = A - величина, которую нужно найти.

Составляем равенство

.

По статистическим таблицам находим, что вероятность 0,40 соответствует значению границы интервала z = −0,25 .

Поэтому составляем равенство

и находим его решение:

A = 287300 .

Ответ: доходы 40 % семей менее 287300.

Закрытый интервал

Во многих задачах требуется найти вероятность того, что нормально распределённая случайная величина примет значение в интервале от z 1 до z 2 . То есть попадёт в закрытый интервал. Для решения таких задач необходимо найти в таблице вероятности, соответствующие границам интервала, а затем найти разность этих вероятностей. При этом требуется вычитать меньшее значение из большего. Примеры на решения этих распространённых задач - следующие, причём решить их предлагается самостоятельно, а затем можно посмотреть правильные решения и ответы.

Пример 3. Прибыль предприятия за некоторый период - случайная величина, подчинённая нормальному закону распределения со средним значением 0,5 млн. у.е. и стандартным отклонением 0,354. Определить с точностью до двух знаков после запятой вероятность того, что прибыль предприятия составит от 0,4 до 0,6 у.е.

Пример 4. Длина изготавливаемой детали представляет собой случайную величину, распределённую по нормальному закону с параметрами μ =10 и σ =0,071 . Найти с точностью до двух знаков после запятой вероятность брака, если допустимые размеры детали должны быть 10±0,05 .

Подсказка: в этой задаче помимо нахождения вероятности попадания случайной величины в закрытый интервал (вероятность получения небракованной детали) требуется выполнить ещё одно действие.

позволяет определить вероятность того, что стандартизованное значение Z не меньше -z и не больше +z , где z - произвольно выбранное значение стандартизованной случайной величины.

Приближенный метод проверки нормальности распределения

Приближенный метод проверки нормальности распределения значений выборки основан на следующем свойстве нормального распределения: коэффициент асимметрии β 1 и коэффициент эксцесса β 2 равны нулю .

Коэффициент асимметрии β 1 численно характеризует симметрию эмпирического распределения относительно среднего. Если коэффициент асимметрии равен нулю, то среднее арифметрического значение, медиана и мода равны: и кривая плотности распределения симметрична относительно среднего. Если коэффициент асимметрии меньше нуля (β 1 < 0 ), то среднее арифметическое меньше медианы, а медиана, в свою очередь, меньше моды () и кривая сдвинута вправо (по сравнению с нормальным распределением) . Если коэффициент асимметрии больше нуля (β 1 > 0 ), то среднее арифметическое больше медианы, а медиана, в свою очередь, больше моды () и кривая сдвинута влево (по сравнению с нормальным распределением) .

Коэффициент эксцесса β 2 характеризует концентрацию эмпирического распределения вокруг арифметического среднего в направлении оси Oy и степень островершинности кривой плотности распределения. Если коэффициент эксцесса больше нуля, то кривая более вытянута (по сравнению с нормальным распределением) вдоль оси Oy (график более островершинный). Если коэффициент эксцесса меньше нуля, то кривая более сплющена (по сравнению с нормальным распределением) вдоль оси Oy (график более туповершинный).

Коэффициент асимметрии можно вычислить с помощью функции MS Excel СКОС. Если вы проверяете один массив данных, то требуется ввести диапазон данных в одно окошко "Число".


Коэффициент эксцесса можно вычислить с помощью функции MS Excel ЭКСЦЕСС. При проверке одного массива данных также достаточно ввести диапазон данных в одно окошко "Число".


Итак, как мы уже знаем, при нормальном распределении коэффициенты асимметрии и эксцесса равны нулю. Но что, если мы получили коэффициенты асимметрии, равные -0,14, 0,22, 0,43, а коэффициенты эксцесса, равные 0,17, -0,31, 0,55? Вопрос вполне справедливый, так как практически мы имеем дело лишь с приближенными, выборочными значениями асимметрии и эксцесса, которые подвержены некоторому неизбежному, неконтролируемому разбросу. Поэтому нельзя требовать строгого равенства этих коэффициентов нулю, они должны лишь быть достаточно близкими к нулю. Но что значит - достаточно?

Требуется сравнить полученные эмпирические значения с допустимыми значениями. Для этого нужно проверить следующие неравенства (сравнить значения коэффициентов по модулю с критическими значениями - границами области проверки гипотезы).

Для коэффициента асимметрии β 1 .

Случайной величиной называют переменную величину, которая в результате каждого испытания принимает одно заранее неизвестное значение, зависящее от случайных причин. Случайные величины обозначают заглавными латинскими буквами: $X,\ Y,\ Z,\ \dots $ По своему типу случайные величины могут быть дискретными и непрерывными .

Дискретная случайная величина - это такая случайная величина, значения которой могут быть не более чем счетными, то есть либо конечными, либо счетными. Под счетностью имеется ввиду, что значения случайной величины можно занумеровать.

Пример 1 . Приведем примеры дискретных случайных величин:

а) число попаданий в мишень при $n$ выстрелах, здесь возможные значения $0,\ 1,\ \dots ,\ n$.

б) число выпавших гербов при подкидывании монеты, здесь возможные значения $0,\ 1,\ \dots ,\ n$.

в) число прибывших кораблей на борт (счетное множество значений).

г) число вызовов, поступающих на АТС (счетное множество значений).

1. Закон распределения вероятностей дискретной случайной величины.

Дискретная случайная величина $X$ может принимать значения $x_1,\dots ,\ x_n$ с вероятностями $p\left(x_1\right),\ \dots ,\ p\left(x_n\right)$. Соответствие между этими значениями и их вероятностями называется законом распределения дискретной случайной величины . Как правило, это соответствие задается с помощью таблицы, в первой строке которой указывают значения $x_1,\dots ,\ x_n$, а во второй строке соответствующие этим значениям вероятности $p_1,\dots ,\ p_n$.

$\begin{array}{|c|c|}
\hline
X_i & x_1 & x_2 & \dots & x_n \\
\hline
p_i & p_1 & p_2 & \dots & p_n \\
\hline
\end{array}$

Пример 2 . Пусть случайная величина $X$ - число выпавших очков при подбрасывании игрального кубика. Такая случайная величина $X$ может принимать следующие значения $1,\ 2,\ 3,\ 4,\ 5,\ 6$. Вероятности всех этих значений равны $1/6$. Тогда закон распределения вероятностей случайной величины $X$:

$\begin{array}{|c|c|}
\hline
1 & 2 & 3 & 4 & 5 & 6 \\
\hline

\hline
\end{array}$

Замечание . Поскольку в законе распределения дискретной случайной величины $X$ события $1,\ 2,\ \dots ,\ 6$ образуют полную группу событий, то в сумме вероятности должны быть равны единице, то есть $\sum{p_i}=1$.

2. Математическое ожидание дискретной случайной величины.

Математическое ожидание случайной величины задает ее «центральное» значение. Для дискретной случайной величины математическое ожидание вычисляется как сумма произведений значений $x_1,\dots ,\ x_n$ на соответствующие этим значениям вероятности $p_1,\dots ,\ p_n$, то есть: $M\left(X\right)=\sum^n_{i=1}{p_ix_i}$. В англоязычной литературе используют другое обозначение $E\left(X\right)$.

Свойства математического ожидания $M\left(X\right)$:

  1. $M\left(X\right)$ заключено между наименьшим и наибольшим значениями случайной величины $X$.
  2. Математическое ожидание от константы равно самой константе, т.е. $M\left(C\right)=C$.
  3. Постоянный множитель можно выносить за знак математического ожидания: $M\left(CX\right)=CM\left(X\right)$.
  4. Математическое ожидание суммы случайных величин равно сумме их математических ожиданий: $M\left(X+Y\right)=M\left(X\right)+M\left(Y\right)$.
  5. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: $M\left(XY\right)=M\left(X\right)M\left(Y\right)$.

Пример 3 . Найдем математическое ожидание случайной величины $X$ из примера $2$.

$$M\left(X\right)=\sum^n_{i=1}{p_ix_i}=1\cdot {{1}\over {6}}+2\cdot {{1}\over {6}}+3\cdot {{1}\over {6}}+4\cdot {{1}\over {6}}+5\cdot {{1}\over {6}}+6\cdot {{1}\over {6}}=3,5.$$

Можем заметить, что $M\left(X\right)$ заключено между наименьшим ($1$) и наибольшим ($6$) значениями случайной величины $X$.

Пример 4 . Известно, что математическое ожидание случайной величины $X$ равно $M\left(X\right)=2$. Найти математическое ожидание случайной величины $3X+5$.

Используя вышеуказанные свойства, получаем $M\left(3X+5\right)=M\left(3X\right)+M\left(5\right)=3M\left(X\right)+5=3\cdot 2+5=11$.

Пример 5 . Известно, что математическое ожидание случайной величины $X$ равно $M\left(X\right)=4$. Найти математическое ожидание случайной величины $2X-9$.

Используя вышеуказанные свойства, получаем $M\left(2X-9\right)=M\left(2X\right)-M\left(9\right)=2M\left(X\right)-9=2\cdot 4-9=-1$.

3. Дисперсия дискретной случайной величины.

Возможные значения случайных величин с равными математическими ожиданиями могут по-разному рассеиваться вокруг своих средних значений. Например, в двух студенческих группах средний балл за экзамен по теории вероятностей оказался равным 4, но в одной группе все оказались хорошистами, а в другой группе - только троечники и отличники. Поэтому возникает необходимость в такой числовой характеристике случайной величины, которая бы показывала разброс значений случайной величины вокруг своего математического ожидания. Такой характеристикой является дисперсия.

Дисперсия дискретной случайной величины $X$ равна:

$$D\left(X\right)=\sum^n_{i=1}{p_i{\left(x_i-M\left(X\right)\right)}^2}.\ $$

В англоязычной литературе используются обозначения $V\left(X\right),\ Var\left(X\right)$. Очень часто дисперсию $D\left(X\right)$ вычисляют по формуле $D\left(X\right)=\sum^n_{i=1}{p_ix^2_i}-{\left(M\left(X\right)\right)}^2$.

Свойства дисперсии $D\left(X\right)$:

  1. Дисперсия всегда больше или равна нулю, т.е. $D\left(X\right)\ge 0$.
  2. Дисперсия от константы равна нулю, т.е. $D\left(C\right)=0$.
  3. Постоянный множитель можно выносить за знак дисперсии при условии возведения его в квадрат, т.е. $D\left(CX\right)=C^2D\left(X\right)$.
  4. Дисперсия суммы независимых случайных величин равна сумме их дисперсий, т.е. $D\left(X+Y\right)=D\left(X\right)+D\left(Y\right)$.
  5. Дисперсия разности независимых случайных величин равна сумме их дисперсий, т.е. $D\left(X-Y\right)=D\left(X\right)+D\left(Y\right)$.

Пример 6 . Вычислим дисперсию случайной величины $X$ из примера $2$.

$$D\left(X\right)=\sum^n_{i=1}{p_i{\left(x_i-M\left(X\right)\right)}^2}={{1}\over {6}}\cdot {\left(1-3,5\right)}^2+{{1}\over {6}}\cdot {\left(2-3,5\right)}^2+\dots +{{1}\over {6}}\cdot {\left(6-3,5\right)}^2={{35}\over {12}}\approx 2,92.$$

Пример 7 . Известно, что дисперсия случайной величины $X$ равна $D\left(X\right)=2$. Найти дисперсию случайной величины $4X+1$.

Используя вышеуказанные свойства, находим $D\left(4X+1\right)=D\left(4X\right)+D\left(1\right)=4^2D\left(X\right)+0=16D\left(X\right)=16\cdot 2=32$.

Пример 8 . Известно, что дисперсия случайной величины $X$ равна $D\left(X\right)=3$. Найти дисперсию случайной величины $3-2X$.

Используя вышеуказанные свойства, находим $D\left(3-2X\right)=D\left(3\right)+D\left(2X\right)=0+2^2D\left(X\right)=4D\left(X\right)=4\cdot 3=12$.

4. Функция распределения дискретной случайной величины.

Способ представления дискретной случайной величины в виде ряда распределения не является единственным, а главное он не является универсальным, поскольку непрерывную случайную величину нельзя задать с помощью ряда распределения. Существует еще один способ представления случайной величины - функция распределения.

Функцией распределения случайной величины $X$ называется функция $F\left(x\right)$, которая определяет вероятность того, что случайная величина $X$ примет значение, меньшее некоторого фиксированного значения $x$, то есть $F\left(x\right)=P\left(X < x\right)$

Свойства функции распределения :

  1. $0\le F\left(x\right)\le 1$.
  2. Вероятность того, что случайная величина $X$ примет значения из интервала $\left(\alpha ;\ \beta \right)$, равна разности значений функции распределения на концах этого интервала: $P\left(\alpha < X < \beta \right)=F\left(\beta \right)-F\left(\alpha \right)$
  3. $F\left(x\right)$ - неубывающая.
  4. ${\mathop{lim}_{x\to -\infty } F\left(x\right)=0\ },\ {\mathop{lim}_{x\to +\infty } F\left(x\right)=1\ }$.

Пример 9 . Найдем функцию распределения $F\left(x\right)$ для закона распределения дискретной случайной величины $X$ из примера $2$.

$\begin{array}{|c|c|}
\hline
1 & 2 & 3 & 4 & 5 & 6 \\
\hline
1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\
\hline
\end{array}$

Если $x\le 1$, то, очевидно, $F\left(x\right)=0$ (в том числе и при $x=1$ $F\left(1\right)=P\left(X < 1\right)=0$).

Если $1 < x\le 2$, то $F\left(x\right)=P\left(X=1\right)=1/6$.

Если $2 < x\le 3$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)=1/6+1/6=1/3$.

Если $3 < x\le 4$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)=1/6+1/6+1/6=1/2$.

Если $4 < x\le 5$, то $F\left(X\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)+P\left(X=4\right)=1/6+1/6+1/6+1/6=2/3$.

Если $5 < x\le 6$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)+P\left(X=4\right)+P\left(X=5\right)=1/6+1/6+1/6+1/6+1/6=5/6$.

Если $x > 6$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)+P\left(X=4\right)+P\left(X=5\right)+P\left(X=6\right)=1/6+1/6+1/6+1/6+1/6+1/6=1$.

Итак, $F(x)=\left\{\begin{matrix}
0,\ при\ x\le 1,\\
1/6,при\ 1 < x\le 2,\\
1/3,\ при\ 2 < x\le 3,\\
1/2,при\ 3 < x\le 4,\\
2/3,\ при\ 4 < x\le 5,\\
5/6,\ при\ 4 < x\le 5,\\
1,\ при\ x > 6.
\end{matrix}\right.$

Можно выделить наиболее часто встречающиеся законы распределения дискретных случайных величин:

  • Биномиальный закон распределения
  • Пуассоновский закон распределения
  • Геометрический закон распределения
  • Гипергеометрический закон распределения

Для данных распределений дискретных случайных величин расчет вероятностей их значений, а также числовых характеристик (математическое ожидание, дисперсия, и т.д.) производится по определенных «формулам». Поэтому очень важно знать данные типы распределений и их основные свойства.


1. Биномиальный закон распределения.

Дискретная случайная величина $X$ подчинена биномиальному закону распределения вероятностей, если она принимает значения $0,\ 1,\ 2,\ \dots ,\ n$ с вероятностями $P\left(X=k\right)=C^k_n\cdot p^k\cdot {\left(1-p\right)}^{n-k}$. Фактически, случайная величина $X$ - это число появлений события $A$ в $n$ независимых испытаний . Закон распределения вероятностей случайной величины $X$:

$\begin{array}{|c|c|}
\hline
X_i & 0 & 1 & \dots & n \\
\hline
p_i & P_n\left(0\right) & P_n\left(1\right) & \dots & P_n\left(n\right) \\
\hline
\end{array}$

Для такой случайной величины математическое ожидание $M\left(X\right)=np$, дисперсия $D\left(X\right)=np\left(1-p\right)$.

Пример . В семье двое детей. Считая вероятности рождения мальчика и девочки равными $0,5$, найти закон распределения случайной величины $\xi $ - числа мальчиков в семье.

Пусть случайная величина $\xi $ - число мальчиков в семье. Значения, которые может принимать $\xi:\ 0,\ 1,\ 2$. Вероятности этих значений можно найти по формуле $P\left(\xi =k\right)=C^k_n\cdot p^k\cdot {\left(1-p\right)}^{n-k}$, где $n=2$ - число независимых испытаний, $p=0,5$ - вероятность появления события в серии из $n$ испытаний. Получаем:

$P\left(\xi =0\right)=C^0_2\cdot {0,5}^0\cdot {\left(1-0,5\right)}^{2-0}={0,5}^2=0,25;$

$P\left(\xi =1\right)=C^1_2\cdot 0,5\cdot {\left(1-0,5\right)}^{2-1}=2\cdot 0,5\cdot 0,5=0,5;$

$P\left(\xi =2\right)=C^2_2\cdot {0,5}^2\cdot {\left(1-0,5\right)}^{2-2}={0,5}^2=0,25.$

Тогда закон распределения случайной величины $\xi $ есть соответствие между значениями $0,\ 1,\ 2$ и их вероятностями, то есть:

$\begin{array}{|c|c|}
\hline
\xi & 0 & 1 & 2 \\
\hline
P(\xi) & 0,25 & 0,5 & 0,25 \\
\hline
\end{array}$

Сумма вероятностей в законе распределения должна быть равна $1$, то есть $\sum _{i=1}^{n}P(\xi _{{\rm i}})=0,25+0,5+0,25=1 $.

Математическое ожидание $M\left(\xi \right)=np=2\cdot 0,5=1$, дисперсия $D\left(\xi \right)=np\left(1-p\right)=2\cdot 0,5\cdot 0,5=0,5$, среднее квадратическое отклонение $\sigma \left(\xi \right)=\sqrt{D\left(\xi \right)}=\sqrt{0,5}\approx 0,707$.

2. Закон распределения Пуассона.

Если дискретная случайная величина $X$ может принимать только целые неотрицательные значения $0,\ 1,\ 2,\ \dots ,\ n$ с вероятностями $P\left(X=k\right)={{{\lambda }^k}\over {k!}}\cdot e^{-\lambda }$, то говорят, что она подчинена закону распределения Пуассона с параметром $\lambda $. Для такой случайной величины математическое ожидание и дисперсия равны между собой и равны параметру $\lambda $, то есть $M\left(X\right)=D\left(X\right)=\lambda $.

Замечание . Особенность этого распределения заключается в том, что мы на основании опытных данных находим оценки $M\left(X\right),\ D\left(X\right)$, если полученные оценки близки между собой, то у нас есть основание утверждать, что случайная величина подчинена закону распределения Пуассона.

Пример . Примерами случайных величин, подчиненных закону распределения Пуассона, могут быть: число автомашин, которые будут обслужены завтра автозаправочной станцией; число бракованных изделий в произведенной продукции.

Пример . Завод отправил на базу $500$ изделий. Вероятность повреждения изделия в пути равна $0,002$. Найти закон распределения случайной величины $X$, равной числу поврежденных изделий; чему равно $M\left(X\right),\ D\left(X\right)$.

Пусть дискретная случайная величина $X$ - число поврежденных изделий. Такая случайная величина подчинена закону распределения Пуассона с параметром $\lambda =np=500\cdot 0,002=1$. Вероятности значений равны $P\left(X=k\right)={{{\lambda }^k}\over {k!}}\cdot e^{-\lambda }$. Очевидно, что все вероятности всех значений $X=0,\ 1,\ \dots ,\ 500$ перечислить невозможно, поэтому мы ограничимся лишь первыми несколькими значениями.

$P\left(X=0\right)={{1^0}\over {0!}}\cdot e^{-1}=0,368;$

$P\left(X=1\right)={{1^1}\over {1!}}\cdot e^{-1}=0,368;$

$P\left(X=2\right)={{1^2}\over {2!}}\cdot e^{-1}=0,184;$

$P\left(X=3\right)={{1^3}\over {3!}}\cdot e^{-1}=0,061;$

$P\left(X=4\right)={{1^4}\over {4!}}\cdot e^{-1}=0,015;$

$P\left(X=5\right)={{1^5}\over {5!}}\cdot e^{-1}=0,003;$

$P\left(X=6\right)={{1^6}\over {6!}}\cdot e^{-1}=0,001;$

$P\left(X=k\right)={{{\lambda }^k}\over {k!}}\cdot e^{-\lambda }$

Закон распределения случайной величины $X$:

$\begin{array}{|c|c|}
\hline
X_i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & ... & k \\
\hline
P_i & 0,368; & 0,368 & 0,184 & 0,061 & 0,015 & 0,003 & 0,001 & ... & {{{\lambda }^k}\over {k!}}\cdot e^{-\lambda } \\
\hline
\end{array}$

Для такой случайной величины математическое ожидание и дисперсия равным между собой и равны параметру $\lambda $, то есть $M\left(X\right)=D\left(X\right)=\lambda =1$.

3. Геометрический закон распределения.

Если дискретная случайная величина $X$ может принимать только натуральные значения $1,\ 2,\ \dots ,\ n$ с вероятностями $P\left(X=k\right)=p{\left(1-p\right)}^{k-1},\ k=1,\ 2,\ 3,\ \dots $, то говорят, что такая случайная величина $X$ подчинена геометрическому закону распределения вероятностей. Фактически, геометрическое распределения представляется собой испытания Бернулли до первого успеха.

Пример . Примерами случайных величин, имеющих геометрическое распределение, могут быть: число выстрелов до первого попадания в цель; число испытаний прибора до первого отказа; число бросаний монеты до первого выпадения орла и т.д.

Математическое ожидание и дисперсия случайной величины, подчиненной геометрическому распределению, соответственно равны $M\left(X\right)=1/p$, $D\left(X\right)=\left(1-p\right)/p^2$.

Пример . На пути движения рыбы к месту нереста находится $4$ шлюза. Вероятность прохода рыбы через каждый шлюз $p=3/5$. Построить ряд распределения случайной величины $X$ - число шлюзов, пройденных рыбой до первого задержания у шлюза. Найти $M\left(X\right),\ D\left(X\right),\ \sigma \left(X\right)$.

Пусть случайная величина $X$ - число шлюзов, пройденных рыбой до первого задержания у шлюза. Такая случайная величина подчинена геометрическому закону распределения вероятностей. Значения, которые может принимать случайная величина $X:$ 1, 2, 3, 4. Вероятности этих значений вычисляются по формуле: $P\left(X=k\right)=pq^{k-1}$, где: $p=2/5$ - вероятность задержания рыбы через шлюз, $q=1-p=3/5$ - вероятность прохода рыбы через шлюз, $k=1,\ 2,\ 3,\ 4$.

$P\left(X=1\right)={{2}\over {5}}\cdot {\left({{3}\over {5}}\right)}^0={{2}\over {5}}=0,4;$

$P\left(X=2\right)={{2}\over {5}}\cdot {{3}\over {5}}={{6}\over {25}}=0,24;$

$P\left(X=3\right)={{2}\over {5}}\cdot {\left({{3}\over {5}}\right)}^2={{2}\over {5}}\cdot {{9}\over {25}}={{18}\over {125}}=0,144;$

$P\left(X=4\right)={{2}\over {5}}\cdot {\left({{3}\over {5}}\right)}^3+{\left({{3}\over {5}}\right)}^4={{27}\over {125}}=0,216.$

$\begin{array}{|c|c|}
\hline
X_i & 1 & 2 & 3 & 4 \\
\hline
P\left(X_i\right) & 0,4 & 0,24 & 0,144 & 0,216 \\
\hline
\end{array}$

Математическое ожидание:

$M\left(X\right)=\sum^n_{i=1}{x_ip_i}=1\cdot 0,4+2\cdot 0,24+3\cdot 0,144+4\cdot 0,216=2,176.$

Дисперсия:

$D\left(X\right)=\sum^n_{i=1}{p_i{\left(x_i-M\left(X\right)\right)}^2=}0,4\cdot {\left(1-2,176\right)}^2+0,24\cdot {\left(2-2,176\right)}^2+0,144\cdot {\left(3-2,176\right)}^2+$

$+\ 0,216\cdot {\left(4-2,176\right)}^2\approx 1,377.$

Среднее квадратическое отклонение:

$\sigma \left(X\right)=\sqrt{D\left(X\right)}=\sqrt{1,377}\approx 1,173.$

4. Гипергеометрический закон распределения.

Если $N$ объектов, среди которых $m$ объектов обладают заданным свойством. Случайных образом без возвращения извлекают $n$ объектов, среди которых оказалось $k$ объектов, обладающих заданным свойством. Гипергеометрическое распределение дает возможность оценить вероятность того, что ровно $k$ объектов в выборке обладают заданным свойством. Пусть случайная величина $X$ - число объектов в выборке, обладающих заданным свойством. Тогда вероятности значений случайной величины $X$:

$P\left(X=k\right)={{C^k_mC^{n-k}_{N-m}}\over {C^n_N}}$

Замечание . Статистическая функция ГИПЕРГЕОМЕТ мастера функций $f_x$ пакета Excel дает возможность определить вероятность того, что определенное количество испытаний будет успешным.

$f_x\to $ статистические $\to $ ГИПЕРГЕОМЕТ $\to $ ОК . Появится диалоговое окно, которое нужно заполнить. В графе Число_успехов_в_выборке указываем значение $k$. Размер_выборки равен $n$. В графе Число_успехов_в_совокупности указываем значение $m$. Размер_совокупности равен $N$.

Математическое ожидание и дисперсия дискретной случайной величины $X$, подчиненной геометрическому закону распределения, соответственно равны $M\left(X\right)=nm/N$, $D\left(X\right)={{nm\left(1-{{m}\over {N}}\right)\left(1-{{n}\over {N}}\right)}\over {N-1}}$.

Пример . В кредитном отделе банка работают 5 специалистов с высшим финансовым образованием и 3 специалиста с высшим юридическим образованием. Руководство банка решило направить 3 специалистов Для повышения квалификации, отбирая их в случайном порядке.

а) Составьте ряд распределения числа специалистов с высшим финансовым образованием, которые могут быть направлены на повышение квалификации;

б) Найдите числовые характеристики этого распределения.

Пусть случайная величина $X$ - число специалистов с высшим финансовым образованием среди трех отобранных. Значения, которые может принимать $X:0,\ 1,\ 2,\ 3$. Данная случайная величина $X$ распределена по гипергеометрическому распределению с параметрами: $N=8$ - размер совокупности, $m=5$ - число успехов в совокупности, $n=3$ - размер выборки, $k=0,\ 1,\ 2,\ 3$ - число успехов в выборке. Тогда вероятности $P\left(X=k\right)$ можно рассчитать по формуле: $P(X=k)={C_{m}^{k} \cdot C_{N-m}^{n-k} \over C_{N}^{n} } $. Имеем:

$P\left(X=0\right)={{C^0_5\cdot C^3_3}\over {C^3_8}}={{1}\over {56}}\approx 0,018;$

$P\left(X=1\right)={{C^1_5\cdot C^2_3}\over {C^3_8}}={{15}\over {56}}\approx 0,268;$

$P\left(X=2\right)={{C^2_5\cdot C^1_3}\over {C^3_8}}={{15}\over {28}}\approx 0,536;$

$P\left(X=3\right)={{C^3_5\cdot C^0_3}\over {C^3_8}}={{5}\over {28}}\approx 0,179.$

Тогда ряд распределения случайной величины $X$:

$\begin{array}{|c|c|}
\hline
X_i & 0 & 1 & 2 & 3 \\
\hline
p_i & 0,018 & 0,268 & 0,536 & 0,179 \\
\hline
\end{array}$

Рассчитаем числовые характеристики случайной величины $X$ по общим формулам гипергеометрического распределения.

$M\left(X\right)={{nm}\over {N}}={{3\cdot 5}\over {8}}={{15}\over {8}}=1,875.$

$D\left(X\right)={{nm\left(1-{{m}\over {N}}\right)\left(1-{{n}\over {N}}\right)}\over {N-1}}={{3\cdot 5\cdot \left(1-{{5}\over {8}}\right)\cdot \left(1-{{3}\over {8}}\right)}\over {8-1}}={{225}\over {448}}\approx 0,502.$

$\sigma \left(X\right)=\sqrt{D\left(X\right)}=\sqrt{0,502}\approx 0,7085.$

Глава 1. Дискретная случайная величина

§ 1.Понятия случайной величины.

Закон распределения дискретной случайной величины.

Определение : Случайной называется величина, которая в результате испытания принимает только одно значение из возможного множества своих значение, наперед неизвестное и зависящее от случайных причин.

Различают два вида случайных величин: дискретные и непрерывные.

Определение : Случайная величина Х называется дискретной (прерывной), если множество ее значений конечное или бесконечное, но счетное.

Другими словами, возможные значения дискретной случайной величину можно перенумеровать.

Описать случайную величину можно с помощью ее закона распределения.

Определение : Законом распределения дискретной случайной величины называют соответствие между возможными значениями случайной величины и их вероятностями.

Закон распределения дискретной случайной величины Х может быть задан в виде таблицы, в первой строке которой указаны в порядке возрастания все возможные значения случайной величины, а во второй строке соответствующие вероятности этих значений, т. е.

где р1+ р2+…+ рn=1

Такая таблица называется рядом распределения дискретной случайной величины.

Если множество возможных значений случайной величины бесконечно, то ряд р1+ р2+…+ рn+… сходится и его сумма равна 1.

Закон распределения дискретной случайной величины Х можно изобразить графически, для чего в прямоугольной системе координат строят ломаную, соединяющую последовательно точки с координатами (xi;pi), i=1,2,…n. Полученную линию называют многоугольником распределения (рис.1).


Органическая хиимя" href="/text/category/organicheskaya_hiimya/" rel="bookmark">органической химии соответственно равны 0,7 и 0,8. Составить закон распределения случайной величины Х - числа экзаменов, которые сдаст студент.

Решение. Рассматриваемая случайная величина X в результате экзамена может принять одно из следующих значений:x1=0, x2=1, х3=2.

Найдем вероятность этих значений.Обозначим события:

https://pandia.ru/text/78/455/images/image004_81.jpg" width="259" height="66 src=">


Итак, закон распределения случайной величины Х задается таблицей:

Контроль:0,6+0,38+0,56=1.

§ 2. Функция распределения

Полное описание случайной величины дает также функция распределения.

Определение: Функцией распределения дискретной случайной величины Х называется функция F(x), определяющая для каждого значения х вероятность того, что случайная величина Х примет значение, меньше х:

F(x)=Р(Х<х)

Геометрически функция распределения интерпретируется как вероятность того, что случайная величина Х примет значение, которое изображается на числовой прямой точкой, лежащей левее точки х.

1)0≤ F(x) ≤1;

2) F(x)- неубывающая функция на (-∞;+∞);

3) F(x)- непрерывна слева в точках х= xi (i=1,2,…n) и непрерывна во всех остальных точках;

4) F(-∞)=Р (Х<-∞)=0 как вероятность невозможного события Х<-∞,

F(+∞)=Р(Х<+∞)=1 как вероятность достоверного события Х<-∞.

Если закон распределения дискретной случайной величины Х задан в виде таблицы:

то функция распределения F(x) определяется формулой:

https://pandia.ru/text/78/455/images/image007_76.gif" height="110">

0 при х≤ x1,

р1 при x1< х≤ x2,

F(x)= р1 + р2 при x2< х≤ х3

1 при х> хn.

Её график изображен на рис.2:

§ 3. Числовые характеристики дискретной случайной величины.

К числу важных числовых характеристик относится математическое ожидание.

Определение : Математическим ожиданием М(Х) дискретной случайной величины Х называется сумма произведений всех ее значений на соответствующие им вероятности:

М(Х)= ∑ xiрi= x1р1 + x2р2+…+ xnрn

Математическое ожидание служит характеристикой среднего значения случайной величины.

Свойства математического ожидания:

1)M(C)=C, где С-постоянная величина;

2)М(С Х)=С М(Х),

3)М(Х±Y)=М(Х) ±M(Y);

4)M(X Y)=M(X) M(Y), где X, Y - независимые случайные величины;

5)M(X±C)=M(X)±C, где С-постоянная величина;

Для характеристики степени рассеивания возможных значений дискретной случайной величины вокруг ее среднего значения служит дисперсия .

Определение : Дисперсией D ( X ) случайной величины Х называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:

Свойства дисперсии:

1)D(C)=0, где С-постоянная величина;

2)D(X)>0, где Х - случайная величина;


3)D(C X)=C2 D(X), где С-постоянная величина;

4)D(X+Y)=D(X)+D(Y), где X, Y - независимые случайные величины;

Для вычисления дисперсии часто бывает удобно пользоваться формулой:

D(X)=M(X2)-(M(X))2,

где М(Х)=∑ xi2рi= x12р1 + x22р2+…+ xn2рn

Дисперсия D(X) имеет размерность квадрата случайной величины, что не всегда удобно. Поэтому в качестве показателя рассеяния возможных значений случайной величины используют также величину √D(X).

Определение: Средним квадратическим отклонением σ(Х) случайной величины Х называется квадратный корень из дисперсии:

Задача №2. Дискретная случайная величина Х задана законом распределения:

Найти Р2, функцию распределения F(x) и построить ее график, а также M(X),D(X), σ(Х).

Решение: Так как сумма вероятностей возможных значений случайной величины Х равна 1, то

Р2=1- (0,1+0,3+0,2+0,3)=0,1

Найдем функцию распределения F(х)=P(X

Геометрически это равенство можно истолковать так: F(х) есть вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки х.

Если х≤-1, то F(х)=0, т. к. на (-∞;х) нет ни одного значения данной случайной величины;

Если -1<х≤0, то F(х)=Р(Х=-1)=0,1, т. к. в промежуток (-∞;х) попадает только одно значение x1=-1;

Если 0<х≤1, то F(х)=Р(Х=-1)+ Р(Х=0)=0,1+0,1=0,2, т. к. в промежуток

(-∞;х) попадают два значения x1=-1 и x2=0;

Если 1<х≤2, то F(х)=Р(Х=-1) + Р(Х=0)+ Р(Х=1)= 0,1+0,1+0,3=0,5, т. к. в промежуток (-∞;х) попадают три значения x1=-1, x2=0 и x3=1;

Если 2<х≤3, то F(х)=Р(Х=-1) + Р(Х=0)+ Р(Х=1)+ Р(Х=2)= 0,1+0,1+0,3+0,2=0,7, т. к. в промежуток (-∞;х) попадают четыре значения x1=-1, x2=0,x3=1 и х4=2;

Если х>3, то F(х)=Р(Х=-1) + Р(Х=0)+ Р(Х=1)+ Р(Х=2)+Р(Х=3)= 0,1+0,1+0,3+0,2+0,3=1, т. к. в промежуток (-∞;х) попадают четыре значения x1=-1, x2=0,x3=1,х4=2 и х5=3.

https://pandia.ru/text/78/455/images/image006_89.gif" width="14 height=2" height="2"> 0 при х≤-1,

0,1 при -1<х≤0,

0,2 при 0<х≤1,

F(x)= 0,5 при 1<х≤2,

0,7 при 2<х≤3,

1 при х>3

Изобразим функцию F(x)графически (рис.3):

https://pandia.ru/text/78/455/images/image014_24.jpg" width="158 height=29" height="29">≈1,2845.

§ 4. Биномиальный закон распределения

дискретной случайной величины, закон Пуассона.

Определение: Биномиальным называется закон распределения дискретной случайной величины Х - числа появлений события А в n независимых повторных испытаниях, в каждом из которых события А может наступить с вероятностью p или не наступить с вероятностью q=1-p. Тогда Р(Х=m)-вероятность появления события А ровно m раз в n испытаниях вычисляется по формуле Бернулли:

Р(Х=m)=Сmnpmqn-m

Математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины Х, распределенной по бинарному закону, находят, соответственно, по формулам:

https://pandia.ru/text/78/455/images/image016_31.gif" width="26"> Вероятность события А - «выпадение пятерки» в каждом испытании одна и та же и равна 1/6, т. е. Р(А)=р=1/6, тогда Р(А)=1-p=q=5/6, где

- «выпадения не пятерки».

Случайная величина Х может принимать значения: 0;1;2;3.

Вероятность каждого из возможных значений Х найдем по формуле Бернулли:

Р(Х=0)=Р3(0)=С03р0q3=1 (1/6)0 (5/6)3=125/216;

Р(Х=1)=Р3(1)=С13р1q2=3 (1/6)1 (5/6)2=75/216;

Р(Х=2)=Р3(2)=С23р2q =3 (1/6)2 (5/6)1=15/216;

Р(Х=3)=Р3(3)=С33р3q0=1 (1/6)3 (5/6)0=1/216.

Т. о. закон распределения случайной величины Х имеет вид:

Контроль: 125/216+75/216+15/216+1/216=1.

Найдем числовые характеристики случайной величины Х:

M(X)=np=3 (1/6)=1/2,

D(X)=npq=3 (1/6) (5/6)=5/12,

Задача№4. Станок-автомат штампует детали. Вероятность того, что изготовленная деталь окажется бракованной равна 0,002. Найти вероятность того, что среди 1000 отобранных деталей окажется:

а) 5 бракованных;

б) хотя бы одна бракованная.

Решение: Число n=1000 велико, вероятность изготовления бракованной детали р=0,002 мала, и рассматриваемые события (деталь окажется бракованной) независимы, поэтому имеет место формула Пуассона:

Рn(m)= e - λ λm

Найдем λ=np=1000 0,002=2.

а)Найдем вероятность того, что будет 5 бракованных деталей (m=5):

Р1000(5)= e -2 25 = 32 0,13534 = 0,0361

б)Найдем вероятность того, что будет хотя бы одна бракованная деталь.

Событие А -«хотя бы одна из отобранных деталей бракованная» является противоположным событию -«все отобранные детали не бракованные».Следовательно, Р(А)=1-Р(). Отсюда искомая вероятность равна: Р(А)=1-Р1000(0)=1- e -2 20 = 1- e-2=1-0,13534≈0,865.

Задачи для самостоятельной работы.

1.1

1.2. Дисперсная случайная величина Х задана законом распределения:

Найти р4, функцию распределения F(X) и построить ее график, а также M(X),D(X), σ(Х).

1.3. В коробке 9 фломастеров, из которых 2 фломастера уже не пишут. Наудачу берут 3 фломастера. Случайная величина Х - число пишущих фломастеров среди взятых. Составить закон распределения случайной величины.

1.4. На стеллаже библиотеки в случайном порядке расставлено 6 учебников, причем 4 из них в переплете. Библиотекарь берет наудачу 4 учебника. Случайная величина Х-число учебников в переплете среди взятых. Составить закон распределения случайной величины.

1.5. В билете две задачи. Вероятность правильного решения первой задачи равна 0,9, второй-0,7. Случайная величина Х- число правильно решенных задач в билете. Составить закон распределения, вычислить математическое ожидание и дисперсию этой случайной величины, а также найти функцию распределения F(x) и построить ее график.

1.6. Три стрелка стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,5, для второго-0,8, для третьего -0,7. Случайная величина Х - число попаданий в мишень, если стрелки делают по одному выстрелу. Найти закон распределения, M(X),D(X).

1.7. Баскетболист бросает мяч в корзину с вероятностью попадания при каждом броске 0,8. За каждое попадание он получает 10 очков, а в случае промаха очки ему не начисляют. Составить закон распределения случайной величины Х-числа очков, полученных баскетболистом за 3 броска. Найти M(X),D(X), а также вероятность того, что он получит более 10 очков.

1.8. На карточках написаны буквы, всего 5 гласных и 3 согласных. Наугад выбирают 3 карточки, причем каждый раз взятую карточку возвращают назад. Случайная величина Х-число гласных букв среди взятых. Составить закон распределения и найти M(X),D(X),σ(Х).

1.9. В среднем по 60% договоров страховая компания выплачивает страховые суммы в связи с наступлением страхового случая. Составить закон распределения случайной величины Х - числа договоров, по которым была выплачена страховая сумма среди наудачу отобранных четырех договоров. Найти числовые характеристики этой величины.

1.10. Радиостанция через определенные промежутки времени посылает позывные сигналы (не более четырех) до установления двусторонней связи. Вероятность получения ответа на позывной сигнал равна 0,3. Случайная величина Х-число посланных позывных сигналов. Составить закон распределения и найти F(x).

1.11. Имеется 3 ключа, из которых только один подходит к замку. Составить закон распределения случайной величины Х-числа попыток открывания замка, если испробованный ключ в последующих попытках не участвует. Найти M(X),D(X).

1.12. Производятся последовательные независимые испытания трех приборов на надежность. Каждый следующий прибор испытывается только в том случае, если предыдущий оказался надежным. Вероятность выдержать испытание для каждого прибора равна 0,9. Составить закон распределения случайной величины Х-числа испытанных приборов.

1.13 .Дискретная случайная величина Х имеет три возможные значения: х1=1, х2,х3, причем х1<х2<х3. Вероятность того, что Х примет значения х1 и х2, соответственно равны 0,3 и 0,2. Известно, что М(Х)=2,2, D(X)=0,76. Составить закон распределения случайной величины.

1.14. Блок электронного устройства содержит 100 одинаковых элементов. Вероятность отказа каждого элемента в течении времени Т равна 0,002. Элементы работают независимо. Найти вероятность того, что за время Т откажет не более двух элементов.

1.15. Учебник издан тиражом 50000 экземпляров. Вероятность того, что учебник сброшюрован неправильно, равна 0,0002. Найти вероятность того, что тираж содержит:

а) четыре бракованные книги,

б) менее двух бракованных книг.

1 .16. Число вызовов, поступающих на АТС каждую минуту, распределено по закону Пуассона с параметром λ=1,5. Найдите вероятность того, что за минуту поступит:

а) два вызова;

б)хотя бы один вызов.

1.17.

Найти M(Z),D(Z), если Z=3X+Y.

1.18. Даны законы распределения двух независимых случайных величин:

Найти M(Z),D(Z), если Z=X+2Y.

Ответы:

https://pandia.ru/text/78/455/images/image007_76.gif" height="110">1.1. р3=0,4; 0 при х≤-2,

0,3 при -2<х≤0,

F(x)= 0,5 при 0<х≤2,

0,9 при 2<х≤5,

1 при х>5

1.2. р4=0,1; 0 при х≤-1,

0,3 при -1<х≤0,

0,4 при 0<х≤1,

F(x)= 0,6 при 1<х≤2,

0,7 при 2<х≤3,

1 при х>3

M(Х)=1; D(Х)=2,6; σ(Х) ≈1,612.

https://pandia.ru/text/78/455/images/image025_24.gif" width="2 height=98" height="98"> 0 при х≤0,

0,03 при 0<х≤1,

F(x)= 0,37 при 1<х≤2,

1 при х>2

M(Х)=2; D(Х)=0,62

M(Х)=2,4; D(Х)=0,48, P(X>10)=0,896

1. 8 .

M(Х)=15/8; D(Х)=45/64; σ(Х) ≈

M(Х)=2,4; D(Х)=0,96

https://pandia.ru/text/78/455/images/image008_71.gif" width="14">1.11.

M(Х)=2; D(Х)=2/3

1.14. 1,22 e-0,2≈0,999

1.15. а)0,0189; б) 0,00049

1.16. а)0,0702; б)0,77687

1.17. 3,8; 14,2

1.18. 11,2; 4.

Глава 2. Непрерывная случайная величина

Определение: Непрерывной называют величину, все возможные значения которой полностью заполняют конечный или бесконечный промежуток числовой оси.

Очевидно, число возможных значений непрерывной случайной величины бесконечно.

Непрерывную случайную величину можно задавать с помощью функции распределения.

Определение: Функцией распределения непрерывной случайной величины Х называется функция F(х), определяющая для каждого значения хhttps://pandia.ru/text/78/455/images/image028_11.jpg" width="14" height="13">R

Функцию распределения иногда называют интегральной функцией распределения.

Свойства функции распределения:

1)1≤ F(x) ≤1

2)У непрерывной случайной величины функция распределения непрерывна в любой точке и дифференцируема всюду, кроме, быть может, отдельных точек.

3) Вероятность попадания случайной величины Х в один из промежутков (а;b), [а;b), [а;b], равна разности значений функции F(х) в точках а и b, т.е. Р(а<Х

4)Вероятность того, что непрерывная случайная величина Х примет одно отдельное значение равна 0.

5) F(-∞)=0, F(+∞)=1

Задание непрерывной случайной величины с помощью функции распределения не является единственным. Введем понятие плотности распределения вероятностей (плотность распределения).

Определение : Плотностью распределения вероятностей f ( x ) непрерывной случайной величины Х называется производная от ее функции распределения, т. е.:

Плотность распределения вероятностей иногда называют дифференциальной функцией распределения или дифференциальным законом распределения.

Графикплотности распределения вероятностей f(x) называется кривой распределения вероятностей .

Свойства плотности распределения вероятностей:

1)f(x) ≥0,при хhttps://pandia.ru/text/78/455/images/image029_10.jpg" width="285" height="141">.gif" width="14" height="62 src="> 0 при х≤2,

f(x)= с(х-2) при 2<х≤6,

0 при х>6.

Найти: а) значение с; б) функцию распределения F(х) и построить ее график; в) Р(3≤х<5)

Решение:

+

а) Значение с найдем из условия нормировки: ∫ f(x)dx=1.

Следовательно, -∞

https://pandia.ru/text/78/455/images/image032_23.gif" height="38 src="> -∞ 2 2 х

если 2<х≤6, то F(x)= ∫ 0dx+∫ 1/8(х-2)dx=1/8(х2/2-2х) = 1/8(х2/2-2х - (4/2-4))=

1/8(х2/2-2х+2)=1/16(х-2)2;

Gif" width="14" height="62"> 0 при х≤2,

F(х)= (х-2)2/16 при 2<х≤6,

1 при х>6.

График функции F(х) изображен на рис.3

https://pandia.ru/text/78/455/images/image034_23.gif" width="14" height="62 src="> 0 при х≤0,

F(х)= (3 arctg х)/π при 0<х≤√3,

1 при х>√3.

Найти дифференциальную функцию распределения f(х)

Решение: Т. к.f(х)= F’(x), то

https://pandia.ru/text/78/455/images/image011_36.jpg" width="118" height="24">

Все свойства математического ожидания и дисперсии, рассмотренные ранее для дисперсных случайных величин, справедливы и для непрерывных.

Задача №3. Случайная величина Х задана дифференциальной функцией f(x):

https://pandia.ru/text/78/455/images/image036_19.gif" height="38"> -∞ 2

X3/9 + х2/6 = 8/9-0+9/6-4/6=31/18,

https://pandia.ru/text/78/455/images/image032_23.gif" height="38"> +∞

D(X)= ∫ х2 f(x)dx-(М(х))2=∫ х2 х/3 dx+∫1/3х2 dx=(31/18)2=х4/12 +х3/9 -

- (31/18)2=16/12-0+27/9-8/9-(31/18)2=31/9- (31/18)2==31/9(1-31/36)=155/324,

https://pandia.ru/text/78/455/images/image032_23.gif" height="38">

P(1<х<5)= ∫ f(x)dx=∫ х/3 dx+∫ 1/3 dx+∫ 0 dx= х2/6 +1/3х =

4/6-1/6+1-2/3=5/6.

Задачи для самостоятельного решения.

2.1. Непрерывная случайная величина Х задана функцией распределения:

0 при х≤0,

F(х)= https://pandia.ru/text/78/455/images/image038_17.gif" width="14" height="86"> 0 при х≤ π/6,

F(х)= - cos 3x при π/6<х≤ π/3,

1 при х> π/3.

Найти дифференциальную функцию распределения f (x), а также

Р(2π /9<Х< π /2).

2.3.

0 при х≤2,

f(х)= с х при 2<х≤4,

0 при х>4.

2.4. Непрерывная случайная величина Х задана плотностью распределения:

0 при х≤0,

f(х)= с √х при 0<х≤1,

0 при х>1.

Найти: а) число с; б) М(Х), D(X).

2.5.

https://pandia.ru/text/78/455/images/image041_3.jpg" width="36" height="39"> при х,

0 при х .

Найти: а) F(х) и построить ее график; б) M(X),D(X), σ(Х); в) вероятность того, что в четырех независимых испытаниях величина Х примет ровно 2 раза значение, принадлежащее интервалу (1;4).

2.6. Задана плотность распределения вероятностей непрерывной случайной величины Х:

f(х)= 2(х-2) при х,

0 при х .

Найти: а) F(х) и построить ее график; б) M(X),D(X), σ (Х); в) вероятность того, что в трех независимых испытаниях величина Х примет ровно 2 раза значение, принадлежащее отрезку .

2.7. Функция f(х) задана в виде:

https://pandia.ru/text/78/455/images/image045_4.jpg" width="43" height="38 src=">.jpg" width="16" height="15">[-√3/2 ; √3/2].

2.8. Функция f(x) задана в виде:

https://pandia.ru/text/78/455/images/image046_5.jpg" width="45" height="36 src="> .jpg" width="16" height="15">[- π /4 ; π /4].

Найти: а) значение постоянной с, при которой функция будет плотностью вероятности некоторой случайной величины Х; б) функцию распределения F(x).

2.9. Случайная величина Х, сосредоточенная на интервале (3;7), задана функцией распределения F(х)= . Найти вероятность того, что

случайная величина Х примет значение: а) меньше 5, б) не меньше 7.

2.10. Случайная величина Х, сосредоточенная на интервале (-1;4),

задана функцией распределения F(х)= . Найти вероятность того, что

случайная величина Х примет значение: а) меньше 2, б) не меньше 4.

2.11.

https://pandia.ru/text/78/455/images/image049_6.jpg" width="43" height="44 src="> .jpg" width="16" height="15">.

Найти: а) число с; б) М(Х); в) вероятность Р(Х> М(Х)).

2.12. Случайная величина задана дифференциальной функцией распределения:

https://pandia.ru/text/78/455/images/image050_3.jpg" width="60" height="38 src=">.jpg" width="16 height=15" height="15">.

Найти: а) М(Х); б) вероятность Р(Х≤М(Х))

2.13. Распределение Ремя задается плотностью вероятности:

https://pandia.ru/text/78/455/images/image052_5.jpg" width="46" height="37"> при х ≥0.

Доказать, что f(x) действительно является плотностью распределения вероятностей.

2.14. Задана плотность распределения вероятностей непрерывной случайной величины Х:

https://pandia.ru/text/78/455/images/image054_3.jpg" width="174" height="136 src=">(рис.4) (рис.5)

2.16. Случайная величина Х распределена по закону «прямоугольного треугольника» в интервале (0;4) (рис.5). Найти аналитическое выражение для плотности вероятности f(x) на всей числовой оси.

Ответы

0 при х≤0,

f(х)= https://pandia.ru/text/78/455/images/image038_17.gif" width="14" height="86"> 0 при х≤ π/6,

F(х)= 3sin 3x при π/6<х≤ π/3,

0 при х> π/3. Непрерывная случайная величина Х имеет равномерный закон распределения на некотором интервале (а;b), которому принадлежат все возможные значения Х, если плотность распределения вероятностей f(x) постоянная на этом интервале и равна 0 вне его, т. е.

0 при х≤а,

f(х)= при a<х

0 при х≥b.

График функции f(x) изображен на рис. 1

https://pandia.ru/text/78/455/images/image038_17.gif" width="14" height="86"> 0 при х≤а,

F(х)= https://pandia.ru/text/78/455/images/image077_3.jpg" width="30" height="37">, D(X)=, σ(Х)=.

Задача№1. Случайная величина Х равномерно распределена на отрезке . Найти:

а) плотность распределения вероятностей f(x) и построить ее график;

б) функцию распределения F(x) и построить ее график;

в) M(X),D(X), σ(Х).

Решение: Воспользовавшись формулами, рассмотренными выше, при а=3, b=7, находим:

https://pandia.ru/text/78/455/images/image081_2.jpg" width="22" height="39"> при 3≤х≤7,

0 при х>7

Построим ее график (рис.3):

https://pandia.ru/text/78/455/images/image038_17.gif" width="14" height="86 src="> 0 при х≤3,

F(х)= https://pandia.ru/text/78/455/images/image084_3.jpg" width="203" height="119 src=">рис.4

D(X) = ==https://pandia.ru/text/78/455/images/image089_1.jpg" width="37" height="43">==https://pandia.ru/text/78/455/images/image092_10.gif" width="14" height="49 src="> 0 при х<0,

f(х)= λе-λх при х≥0.

Функция распределения случайной величины Х, распределенной по показательному закону, задается формулой:

https://pandia.ru/text/78/455/images/image094_4.jpg" width="191" height="126 src=">рис..jpg" width="22" height="30"> , D(X)=, σ (Х)=

Таким образом, математическое ожидание и среднее квадратическое отклонение показательного распределения равны между собой.

Вероятность попадания Х в интервал (a;b) вычисляется по формуле:

Р(a<Х

Задача №2. Среднее время безотказной работы прибора равно 100 ч. Полагая, что время безотказной работы прибора имеет показательный закон распределения, найти:

а) плотность распределения вероятностей;

б) функцию распределения;

в) вероятность того, что время безотказной работы прибора превысит 120 ч.

Решение: По условию математическое распределение M(X)=https://pandia.ru/text/78/455/images/image098_10.gif" height="43 src="> 0 при х<0,

а) f(х)= 0,01е -0,01х при х≥0.

б) F(x)= 0 при х<0,

1- е -0,01х при х≥0.

в) Искомую вероятность найдем, используя функцию распределения:

Р(X>120)=1-F(120)=1-(1- е -1,2)= е -1,2≈0,3.

§ 3.Нормальный закон распределения

Определение: Непрерывная случайная величина Х имеет нормальный закон распределения (закон Гаусса), если ее плотность распределения имеет вид:

,

где m=M(X), σ2=D(X), σ>0.

Кривую нормального закона распределения называют нормальной или гауссовой кривой (рис.7)

Нормальная кривая симметрична относительно прямой х=m, имеет максимум в т. х=а, равный .

Функция распределения случайной величины Х, распределенной по нормальному закону, выражается через функцию Лапласа Ф (х) по формуле:

,

где - функция Лапласа.

Замечание: Функция Ф(х) является нечетной (Ф(-х)=-Ф(х)), кроме того, при х>5 можно считать Ф(х) ≈1/2.

График функции распределения F(x) изображен на рис. 8

https://pandia.ru/text/78/455/images/image106_4.jpg" width="218" height="33">

Вероятность того, что абсолютная величина отклонения меньше положительного числа δ вычисляется по формуле:

В частности, при m=0 справедливо равенство:

«Правило трех сигм»

Если случайная величина Х имеет нормальный закон распределения с параметрами m и σ, то практически достоверно, что ее значение заключены в интервале (a-3σ; a+3σ), т. к.

https://pandia.ru/text/78/455/images/image110_2.jpg" width="157" height="57 src=">а)

б) Воспользуемся формулой:

https://pandia.ru/text/78/455/images/image112_2.jpg" width="369" height="38 src=">

По таблице значений функции Ф(х) находим Ф(1,5)=0,4332, Ф(1)=0,3413.

Итак, искомая вероятность:

P(28

Задачи для самостоятельной работы

3.1. Случайная величина Х равномерно распределена в интервале (-3;5). Найдите:

б)функции распределения F(x);

в)числовые характеристики;

г)вероятность Р(4<х<6).

3.2. Случайная величина Х равномерно распределена на отрезке . Найдите:

а) плотность распределения f(x);

б)функции распределения F(x);

в)числовые характеристики;

г)вероятность Р(3≤х≤6).

3.3. На шоссе установлен автоматический светофор, в котором 2 минуты для транспорта горит зеленый свет, 3 секунды желтый и 30 секунд красный и т. д. Машина проезжает по шоссе в случайный момент времени. Найти вероятность того, что машина проедет мимо светофора, не останавливаясь.

3.4. Поезда метрополитена идут регулярно с интервалом 2 минуты. Пассажир выходит на платформу в случайный момент времени. Какова вероятность того, что ждать поезд пассажиру придется больше 50 секунд. Найти математическое ожидание случайной величины Х - время ожидания поезда.

3.5. Найти дисперсию и среднее квадратическое отклонение показательного распределения, заданного функцией распределения:

F(x)= 0 при х<0,

1-е-8х при х≥0.

3.6. Непрерывная случайная величина Х задана плотностью распределения вероятностей:

f(x)= 0 при х<0,

0,7 е-0,7х при х≥0.

а) Назовите закон распределения рассматриваемой случайной величины.

б) Найдите функцию распределения F(X) и числовые характеристики случайной величины Х.

3.7. Случайная величина Х распределена по показательному закону, заданному плотностью распределения вероятностей:

f(x)= 0 при х<0,

0,4 е-0,4 х при х≥0.

Найти вероятность того, что в результате испытания Х примет значение из интервала (2,5;5).

3.8. Непрерывная случайная величина Х распределена по показательному закону, заданному функцией распределения:

F(x)= 0 при х<0,

1-е-0,6х при х≥0

Найти вероятность того, что в результате испытания Х примет значение из отрезка .

3.9. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины соответственно равны 8 и 2. Найдите:

а) плотность распределения f(x);

б) вероятность того, что в результате испытания Х примет значение из интервала (10;14).

3.10. Случайная величина Х распределена нормально с математическим ожиданием 3,5 и дисперсией 0,04. Найдите:

а) плотность распределения f(x);

б) вероятность того, что в результате испытания Х примет значение из отрезка .

3.11. Случайная величина Х распределена нормально с M(X)=0 и D(X)=1. Какое из событий: |Х|≤0,6 или |Х|≥0,6 имеет большую вероятность?

3.12. Случайная величина Х распределена нормально с M(X)=0 и D(X)=1.Из какого интервала (-0,5;-0,1) или (1;2) при одном испытании она примет значение с большей вероятностью?

3.13. Текущая цена за одну акцию может быть смоделирована с помощью нормального закона распределения с M(X)=10ден. ед. и σ (Х)=0,3 ден. ед. Найти:

а) вероятность того, что текущая цена акции будет от 9,8 ден. ед. до 10,4 ден. ед.;

б)с помощью «правила трех сигм» найти границы, в которых будет находится текущая цена акции.

3.14. Производится взвешивание вещества без систематических ошибок. Случайные ошибки взвешивания подчинены нормальному закону со средним квадратическим отношением σ=5г. Найти вероятность того, что в четырех независимых опытах ошибка при трех взвешиваниях не произойдет по абсолютной величине 3г.

3.15. Случайная величина Х распределена нормально с M(X)=12,6. Вероятность попадания случайной величины в интервал (11,4;13,8) равна 0,6826. Найдите среднее квадратическое отклонение σ.

3.16. Случайная величина Х распределена нормально с M(X)=12 и D(X)=36.Найти интервал, в который с вероятностью 0,9973 попадет в результате испытания случайная величина Х.

3.17. Деталь, изготовленная автоматом, считается бракованной, если отклонение Х ее контролируемого параметра от номинала превышает по модулю 2 единицы измерения . Предполагается, что случайная величина Х распределена нормально с M(X)=0 и σ(Х)=0,7. Сколько процентов бракованных деталей выдает автомат?

3.18. Параметр Х детали распределен нормально с математическим ожиданием 2, равным номиналу, и средним квадратическим отклонением 0,014. Найти вероятность того, что отклонение Х от номинала по модулю не превысит 1% номинала.

Ответы

https://pandia.ru/text/78/455/images/image116_9.gif" width="14" height="110 src=">

б) 0 при х≤-3,

F(х)= left">

3.10. а)f(x)= ,

б) Р(3,1≤Х≤3,7) ≈0,8185.

3.11. |x|≥0,6.

3.12. (-0,5;-0,1).

3.13. а) Р(9,8≤Х≤10,4) ≈0,6562.

3.14. 0,111.

3.15. σ=1,2.

3.16. (-6;30).

3.17. 0,4%.

Понравилась статья? Поделитесь ей
Наверх